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Abstract

We present the basic concepts used in market risk evaluations, as well as the standard method-
ologies to compute quantitatively the risk. A new methodology is introduced with the goal to
incorporate the state-of-the-art knowledge about financial time series. The performance evalua-
tion of risk methodologies is explained, and the performance measures of the main risk method-
ologies are compared. The presentation stays at the conceptual level and uses the minimum
number of formula needed for clarity.
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1 Introduction

The original RiskMetrics methodology was established in 1994. This method-
ology incorporates in a simple way the key facts on time series and risk. It is
robust, can be applied to a wide range of assets, and depends mainly on one
parameter. Yet, it has also limitations; for example, the risk horizons are lim-
ited to a few weeks. The existing RiskMetrics methodology (RM1994) has also
shortcomings, due in part to the advance of our knowledge about financial data.
Similarly, the one year “Equal weight” methodology has a comparable set of
strengths and weaknesses, resulting in similar performance figures.

In order to improve and extend the existing risk methodologies, we have re-
visited completely the risk framework, leading to the development of a new
methodology called RM2006. Our goals for this new methodology are as fol-
lows. First, we want to incorporate the recent knowledge about the generic
quantitative behavior of financial time series, in particular the volatility dynamic
and the fat tails. Second, we want to evaluate risks from 1 dayto 1 year, with
a consistent framework. This is particularly important forfinancial actors with
very long time horizons, like insurance firms and pension funds, as a consis-
tent framework allows evaluation of risks from a short term tactical perspective
to long term strategic global allocation. At the level of some particular sec-
tor or sub-portfolio, one is more interested to tactical risk at horizons from 1
day to 2 weeks. At the department or company level, the focus is shifting to
long term stategic risk and global allocation. Having one methodology allows
a seamless analysis across time horizons and aggregations.Third, we want to
improve quantitatively risk evaluations for short risk horizons. The original risk
methodologies are now more than a decade old. The experiencethat was gained
during that lapse of time should allow us to do better. Fourth, we want to keep
a robust and universal approach, with as few parameters as possible. Simplic-
ity has clearly been a key factor in the success of the original methodologies,
that include zero (Equal weight) or one parameter (RM1994).Today, typical
portfolios of large financial institutions can include several thousands of posi-
tions, possibly more than 10’000. With such a size, it is clearly not possible to
have a number of parameters proportional to the portfolio size. For example,
this constraint eliminates all propositions to improve risk measures by using a
GARCH(1,1) process. Beside simpicity, a small set of parameters with fixed
values is also a good way to avoid overfitting.

In this paper, we introduce our new methodology, as well as the key ideas
needed for market risk evaluation. We focus on the main idea,staying at a con-
ceptual level and with the minimum number of formulas. The reader interested
to a more in depth presentation can read [Zumbach, 2006b].
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Figure 1: The annualized daily returns for the FTSE 100 index.

2 The basic ideas behind the risk methodologies

The basics of the market risk methodologies is rooted in the empirical properties
of financial time series. Let us consider for example the timeseries of the daily
returns for the FTSE 100 index, as shown in fig. 1. On this graph, we can
observe clearly both key features of empirical data, without using any statistics.
First, the heteroskedasticity1 can be observed, with periods of high volatility
and periods of low volatility. The clusters of high and low volatility are also the
dominant feature for risk management, as they correspond toperiods of high
and low risks. Second, the mean annualized volatilityσ for this data sample is
around 15%. In the same unit, many returns have absolute values above 45%,
above 60% or even above 75%, corresponding respectively to events at 3σ, 4σ
and 5σ events. This is the signature of a fat tail distribution for the returns, with
large events having a larger probability to appear when compared to returns
drawn from a Gaussian distribution.

Risk evaluation is tightly related to forecasts as risk is essentially given by the
probability of large negative returns in the forthcoming period. The period ex-
tends up to the considered risk horizon∆T, say for example∆T = 10 days. The
desired quantity is a forecast for the probability distribution p̃(r) of the possi-
ble returnsr over the risk horizon∆T. From this probability distribution (pdf),
the usual measures for risk can be computed, like the value atrisk (VaR) or the

1Heteroskedastic means that a time series has a non constant variance through time. The American spelling is
heteroscedastic, but is less faithful to the Greek root.
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expected shortfall (ES). In practice, this problem is decomposed into forecasts
for the mean and variance of the return probability distribution by using

r[∆T] = µ̃[∆T]+ σ̃[∆T] · ε (1)

The returnr[∆T] is a random variable corresponding to the possible price changes
over the risk horizon∆T. Risk corresponds to large negative (positive) returns
for a long (short) position. The forecast for the mean price change is given by
µ̃ and for the volatility byσ̃. These forecasts depend on the risk horizon∆T.
The volatility forecast is a key part as it should capture theheteroskedasticity.
Finally, ε is called the residual and corresponds to the unpredictablepart. It is a
random variable distributed according to a pdfp∆T(ε). The standard assumption
is thatε(t) is an independent and identically distributed (iid) randomvariable,
meaning that the residuals at two different timesε(t) andε(t ′) are independent
and drawn from the same distributionp∆T(ε).

A risk methodology depends mainly onσ̃ andp(ε), and often the mean return
µ̃ is taken to be zero. For example, the RiskMetrics RM1994 methodology uses
an exponential moving average scaled by

√
∆T for the volatility forecast, and a

Gaussian distribution for the residuals pdf. The “equal weight” methodology is
quite similar, but the volatility forecast is computed using one year of historical
daily return, scaled by

√
∆T.

At a given timet, the return pdf is given by the pdf for the residuals, up to a
change of location ˜µ and sizeσ̃. A subtle point is that even though the residual
has a given distributionp(ε), the unconditionaldistribution for the return is
not given by p(ε) because the volatility forecast is time dependent and has a
distribution with fat tails. Therefore, the return pdf can have fat tails even with
Gaussian residuals.

In order to validate a risk methodology, the above formula 1 is solved for the
residual

ε =
r − µ̃

σ̃
(2)

Using historical data, the forecasts and the realized returns can be computed,
and therefore a time series for the residuals can be obtained. Using these re-
alized residuals, the above hypotheses can be checked, namely that ε is inde-
pendent and distributed according top(ε). In practice, one often tests thatε is
uncorrelated, and that at a given risk thresholdα, for exampleα = 95%, the
number of exceedance behaves as expected.

The crucial problem for long risk horizons is that back testing becomesvery
difficult to achieve. This is caused by the shrinking sample size for the residuals
as the risk horizon increases. Essentially, as∆T increases, there is not enough
data left to compute meaningful statistics. For example, with 15 years of data
and a risk horizon of∆T = 1 month, there are 180 independent residuals. At the
95% VaR, only≃9 points should exceed the given threshold. For∆T = 1 year,
only 15 independent data points are left, and≃0.75 point should exceed the 95%
threshold. Clearly, doing statistics with this kind of sample size is difficult or
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impossible. Because of this sample size problem, risk methodologies have been
tested essentially only up to 10 days. Let us emphasize that it is a fundamental
limitation given by the available time series and the considered risk horizons.
In short, it is a road block.

3 Our strategy to bridge the gap between 1 day and ∆T

We need an idea to turn around the road block created by the shrinking sample
sizes. This idea consist in adding more structures into the problem using a pro-
cess. The process is taken with a time incrementδt of one day. It should capture
the essential properties of the financial data, in particular the heteroskedasticity
and fat tails. Moreover the structure of the process should involve only linear
and quadratic terms, so that we have some analytical tractability. In particular,
forecasts can be computed using conditional averages. Thisis realy the crux of
the methodology as it allows us to relate daily data with forecasts at any time
horizon. In this way, the process and its parameters can be calibrated for time
horizons at which statistics are significant. Then, using the process at the time
scaleδt = 1 day, the volatility forecast̃σ[∆T] at the risk horizon∆T can be
computed. The forecasts depend only on the process parameters (which are in-
dependent of∆T) and are consistent across risk horizons∆T. After extensive
testing for risk horizons at which there is enough data to compute significant
statistics, the structure brought in by the process allows us to reach much longer
risk horizons at which our testing ability is limited.

The residuals can then be computed as above, and their properties can be stud-
ied. The desired good properties are that the residuals are independent and with
the same distribution for all assets, namely that they are iid2. Such a study
should be done for a large set of time series, and as functionsof the risk hori-
zons∆T. This strategy uses at best the daily data and their properties in order
to compute an iid random variableε at time horizon∆T.

4 The process

The most salient property of financial time series is that thevolatility is time
varying and clustered. The cluster properties are measuredby the lagged cor-
relation of the volatility. The decay of the lagged correlation quantifies the
memory shape and magnitude. This measures the influence of past volatility
on forthcomming volatility, and is directly related to our ability to compute a
volatility forecast. With empirical data, the lagged correlations decay logarith-
mically as 1− log(∆T)/ log(∆T0), in the range from 1 day to 1 year (with∆T0
or the order of a few years), and for all assets. Intuitively,this means that the

2There is a general difference between independence and the absence of linear correlation. In practice, we replace
the test of independence by the absence of correlations for the residuals and their magnitudes. In the text, we do not
make the rigorous distinction between both concepts.
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Figure 2: The lagged correlation of|r| for 40 time series. The same color is used for broad asset
class, like FX, stock indexes, etc...

memory of the volatility decays very slowly. The universal behavior for the
volatility memory is quite remarkable, and is shown on fig. 2.Clearly, the pro-
cess must capture the long memory of the volatility; for thatpurpose we need to
use a multi-scales long memory extension of I-GARCH called Long-Memory-
ARCH (LM-ARCH) process [Zumbach, 2004]. The core idea for this process
is to measure the historical volatilities with a set of exponential moving aver-
ages (EMA) on a set of time horizons chosen according to a geometric series.
These historical volatilities are summed to obtain the effective volatility that
influences the magnitude of the returns. Essentially, the feed-back loop of the
historical returns on the next random return is identical tothe feedback presents
in the basic GARCH(1,1) process, but with the modification that it involves the
volatilities measured at multiple time scales.

Using Monte Carlo simulations, it can be shown that the lagged correlations
decays appropriately for this process. Because the empirical values for the ex-
ponent∆T0 are similar for all assets, we can choosethe same parameters for
all assets. Our ability to take the same values for the process parameters leads to
a very robust methodology. Moreover, if the number of volatility components is
one, the process is reduced to the I-GARCH process. Finally,do notice that the
process does not include a mean volatility parameter, like in the GARCH(1,1)
process. Such parameters are clearly time series dependentand would lead to a
much more complex (and fragile) evaluation scheme. Instead, in the LM-ARCH
process, the volatility components with the longest time horizons play the role
of a mean volatility for the shorter time horizons.

As mentioned earlier, the process has been chosen so that theconditional ex-
pectations related to the volatility forecasts can be evaluated analytically. After
these computations are done, the desired volatility forecast σ̃ can be expressed
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Figure 3: The forecast weightsλ(∆T/δt, i) as function of the lagi. The dashed straight lines
correspond to the I-GARCH process, for which there is no dependency on∆T/δt. The decay
factors are given in the curve labels. The black curved line corresponds to the long memory
process for a forecast horizon of 1 day, the colored curve forrisk horizon of 5, 21, 65 and 260
days.

as

˜σ2[∆T](t) =
∆T
δt ∑

i
λ(∆T/δt, i) r2(t − iδt). (3)

The weightsλ(∆T/δt, i) obey the sum rule

∑
i

λ(∆T/δt, i) = 1. (4)

This key formula can be understood intuitively as follows. The ratio∆T/δt is
the forecast horizon expressed in days. The leading term forthe forecast is given
by σ̃ ≃

√
∆T/δt. This is the “usual” square root scaling for the volatility with

the time horizon. This term originates in the diffusive behavior of the prices,
which is captured by the base random walk characteristic of our process. The
next term∑i λ r2 is a measure of the past volatility constructed as a weighted
sum of the past return square. The weightsλ(∆T/δt, i) are derived from the
process equations, and depend both on the lagi and on the forecast horizon
∆T/δt. These weights are plotted on fig. 3, for the I-GARCH process and the
long memory ARCH process. Intuitively, we expect that a short term forecast
depends more on the very recent past, whereas a long term forecast depends
more on the distant past. In the figure, we see how the weights induced by
the long memory process follow just this expected behavior depending on the
forecast horizon∆T/δt.
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Figure 4: The volatility forecast for the FTSE 100, for a timehorizon of one day (blue) and one
year (red). The volatilities are annualized.

Fig. 4 shows on the same graph the 1 day and 1 year volatility forecasts. The dif-
ference in the dynamic between the forecast is very clear: the one day forecast
adjusts very rapidely to the changing market conditions whereas the one year
forecast has a smoother evolution. The quality of the volatility forecasts is the
major determinant factor for a risk methodology. Another interesting feature is
that even at a one year horizon, the volatility forecast has asubstantial dynamic,
with a ratio of 3 to 4 between the forecasts during high and lowvolatility peri-
ods. This shows that even for such long risk horizons, neglecting this dynamic
by using a very long term mean volatility is a poor approximation of the market
behavior.

Regarding the mean return forecast ˜µ[∆T], the usual assumption is to neglect
this term. Our empirical investigations have shown that it is not correct, par-
ticularly for interest rates and stock indexes. For interest rates, the yields can
follow a downward or upward trend for very long periods, of the order of a
year or more. These long trends introduce correlations, equivalent to some pre-
dictability in the rates themselves. Similarly, stock indexes follow an overall
upward trend related to interest rates. These effects are quantitatively small,
but they introduce clear deviations from the random walk with ARCH effect on
the volatility. Therefore, we introduce autoregressive terms in the process equa-
tions and we derive their effects in perturbations in the LM-ARCH process. The
autoregressive coefficients are essentially related to correlations, and we eval-
uate them on the last 2 years of data. From these coefficients,the mean return
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Figure 5: The daily residuals for the FTSE 100 index.

forecastµ̃[∆T] is computed, as well as the correction to the volatility forecast.

The above description gives the main idea used to compute theneeded fore-
casts. Yet, substantial research is still needed to build robust algorithms, tested
on hundreds of financial time series originating from aroundthe world. The
set of time series includes the major foreign exchange rates, stock indexes and
interest rates, covering all the major economies. The various sub-problems are
studied as such, for example the volatility forecast is evaluated using appropri-
ate measures of accuracy. We take care to validate the process and its (fixed)
parameters, as well as to incorporate the autoregressive terms in a non para-
metric way. The readers interested in more details can see [Zumbach, 2006b,
Zumbach, 2006a]. After we having good grasp of the process and the required
forecasts, we can move to the study of the residuals.

5 Empirical investigation of the the residual properties

With a methodology to compute the forecasts for the return and volatility, the
residuals can be computed using historical data and the formula 2. Fig. 5 shows
an example for the 1 day residuals for the FTSE 100. The comparison with fig. 1
is particularly impressive, and shows that the heteroskedasticity is correctly dis-
counted, at least to the naked eye.
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Figure 6: Probability distributions for the daily returns and residuals. The returns are normalized
so as to have a unit variance. The Student distribution has 5 degrees of freedom, and has been
rescaled to have a unit variance.

The next key point consists in studying the empirical probability density p∆T(ε)
of the residualsε. Fig. 6 displays the probability distribution of the returns and
residuals, for the FTSE 100 used in fig. 1 and 5. The empirical data show clearly
that a Gaussian distribution can be excluded as it does not provide enough tails.
On the other hand, a Student distribution gives a good description of p∆T(ε).
In principle, the residuals distribution can depend on the risk horizon∆T. In
practice, the distribution is essentially independent of∆T, and the same number
of degrees of freedomν = 5 can be taken for all time horizons. This choice
for the residual distribution completes the overall description of the RM2006
methodology.

6 Back testing

Even if the direct figures comparison between fig. 1 and 5 is impressive, quanti-
tative measures of the risk accuracy need to be built. It is essential for long risk
horizons (both above figures are for 1 day, the easiest horizon!). Our goal is to
compare quantitatively different risk horizons and various methodologies.

For this purpose, we introduce a functionδ(z), calledrelative exceedance frac-
tion, that measures the difference between the actual and expected relative num-
ber of exceedances. The argumentz, calledprobtile, corresponds to the cumu-
lative density function of the return, and is such that 0≤ z≤ 1. It is directly
related to the risk threshold byz= 1−α. For a perfect risk methodology, we
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must obtainδ(z) = 0, namely at all risk thresholds, the actual relative number
of exceedances agree withz. The main advantage of this back testing scheme is
that the whole distribution is tested (and not only a choosenrisk level).3

In order to have an scalar measure of performance for one timeseries, we define

dp = (p+1) 2p
Z 1

0
dz |δ(z)|

(
z− 1

2

)p
.

Essentially, the integral measures the overal departure fromδ(z) = 0, and where
the weights given to the extremes can be chosen by the exponent p. Low values
for dp are better. As we are interested in financial risk at the 95% orhigher, we
take large values for the exponentp. The constant in front of the integral cancels
the leadingp dependency of the integral for|δ(z)| = constant. In this way, the
numberdp can be directly interpreted as a weighted measure of discrepency
between theoretical and actual relative exceedances.

The above measure of performancedp can be computed for various time se-
ries, at a given risk horizon∆T. In order to assess the global quality of a given
methodology, we need to average the quality measuresdp on a test set of time
series. This allows us to obtain overal quality measuresdp(∆T) that can be
compared for different methodologies. The figure 7 shows that the risk esti-
mates are improved by a factor∼ 3 when using the new methodology. Another
way to analyze these curves is that the new RM2006 methodology at a 6 months
risk horizon is as accurate as the existing methodologies ata 10 days risk hori-
zon. This is clearly a very large gain in term of the risk horizons that can be
used. As mentioned above, we also expect that the residuals are iid. A similar
procedure can be used to compute the lagged correlations forε and |ε|, or for
z−1/2 and|z−1/2|. The most important measures are for|ε| and |z−1/2|,
as this is mainly sensitive to the discounting of the heteroskedasticity. For the
price changes, the lagged correlations of|r| have values in the 5% to 30% range,
with a broad dispersion. These numbers are a direct measure of the volatility
clustering, and the starting point for constructing a risk measure based onr/σ̃.

3The main idea used in back testing is the following: the theoretical Student distribution allows to map
the empirical residualsε to a random variablez∈ [0,1] given by the corresponding cdf

z= cdf(ε) z∈ [0,1]

where cdf(·) is the cumulative density function corresponding to a Student distribution with 5 degrees of
freedom. In more generality, for a complex portfolio with non linear positions, a risk methodology gives
a forecast for the return distribution ˜p(r). The probability to observe a given quantiler, called “probtile”,
is defined by

z=
Z r

−∞
dr′ p̃(r ′).

These two definitions are equivalent for a simple time series.
If the risk methodology captures correctly the behaviour ofthe financial time series, the empirical prob-

ability distributionp(z) for zmust be uniform on[0,1] (and iid). For a uniform pdf, the corresponding cdf
is linear. Therefore, we define the functionδ(z) that measures the departure from a linear cdf by

δ(z) = cdf(z)−z.

where cdf(z) is the empirical cumulative distribution for the probtilesz.
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Figure 7: The overall quality measured32 for the four main methodologies. The date set con-
tains a total of 233 times series, divided into commodities (18), foreign exchange (44), stock
indexes (52), stocks (14) from France and Switzerland, CDS spreads (Credit Default Swap) on
US firms (5), interest rates (100) with maturities at 1 day, 1 month, 1 year and 10 years. The
time series are taken from all geographic areas.

The lagged correlations for|z−1/2| are displayed on fig. 8. This figure shows
the improvement given by the new methodology, as well as the inferior results
of the “equal weight” scheme due to the incorrect weighting of the past returns.

7 Remarks and conclusions

All the above statistical tests show the consistent improvements provided by
the new RM2006 methodology. Yet, it comes with a price which is the added
complexity of the methodology. If the main idea is quite straight forward and
appears as a natural extension of the existing methodologies, an essential contri-
bution to the overal final performances is made by the discounting of the small
returns correlations. This part has only been alluded to in the present paper. It
introduces its own set of analytical calculations in the process setup as well as
non parametric statistical estimates in the actual implementation. All of these
factors contribute to the final increase of performance and complexity of the
new scheme.

Because of the observed heteroskedasticity of the financialtime series, risk is
tightly related to volatility forecasts. The best volatility forecast is obtained
using all the returns, as this preserves the entire information. Our scheme using
a process with daily increments,δt = 1 day, allows us to extract the existing
information from the past within a clean framework. The longmemory kernel
weights optimally this information, whereas an exponential (rectangular) kernel
emphasizes too much the near-by (distant) past. On the otherhand, any scheme
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Figure 8: The overall lagged correlation of|z− 1/2| for the four main methodologies. For a
given risk horizon∆T, the lagged correlationρ∆T at lag∆T is computed for each time series.
Then, we compute the mean of|ρ∆T | on our test set of time series.

that uses returns on longer time horizons is losing information, and therefore
leads to inferior forecasts. For example, using monthly or yearly data to forecast
the one year volatility is essentially throwing away most ofthe information.

Finally, the idea of using a process to set the market risk framework allows
us both to reach long risk horizons and to have consistent risk estimates across
horizons. This is important to analyze a portfolio at different level of details ver-
sus different risk horizons. At the tactical level, say for each trading desks, one
can analyze and optimize the short term risk of every positions. As one moves
to a coarser level in an organization, one becomes more interested in strategic
allocation and at longer risk horizons, say for example to assess the overal frac-
tion of equities versus bonds. The new RM2006 methodology allows us to have
one consistent framework for the tactical and the strategicrisk analysis over a
broad range of time horizons.
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