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Abstract

We present the basic concepts used in market risk evalgatisnwvell as the standard method-
ologies to compute quantitatively the risk. A new methodgles introduced with the goal to
incorporate the state-of-the-art knowledge about findtioie series. The performance evalua-
tion of risk methodologies is explained, and the perforneaneasures of the main risk method-
ologies are compared. The presentation stays at the caratdptel and uses the minimum
number of formula needed for clarity.
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1 Introduction

The original RiskMetrics methodology was established i84L9This method-
ology incorporates in a simple way the key facts on time seaied risk. It is
robust, can be applied to a wide range of assets, and depeaidl/ron one
parameter. Yet, it has also limitations; for example, tis& horizons are lim-
ited to a few weeks. The existing RiskMetrics methodologyl(R94) has also
shortcomings, due in part to the advance of our knowledgatdbmncial data.
Similarly, the one year “Equal weight” methodology has a panable set of
strengths and weaknesses, resulting in similar perforenfigares.

In order to improve and extend the existing risk methodasgive have re-
visited completely the risk framework, leading to the depahent of a new
methodology called RM2006. Our goals for this new methoggplare as fol-
lows. First, we want to incorporate the recent knowledgeualioe generic
guantitative behavior of financial time series, in partacuhe volatility dynamic
and the fat tails. Second, we want to evaluate risks from ltddyyear, with
a consistent framework. This is particularly importantfioencial actors with
very long time horizons, like insurance firms and pensiordfjras a consis-
tent framework allows evaluation of risks from a short teattical perspective
to long term strategic global allocation. At the level of soparticular sec-
tor or sub-portfolio, one is more interested to tacticak @ horizons from 1
day to 2 weeks. At the department or company level, the fosshifting to
long term stategic risk and global allocation. Having oneghadology allows
a seamless analysis across time horizons and aggregatibind, we want to
improve quantitatively risk evaluations for short risk izons. The original risk
methodologies are now more than a decade old. The expetigaiosas gained
during that lapse of time should allow us to do better. Fqusila want to keep
a robust and universal approach, with as few parameterssasopm Simplic-
ity has clearly been a key factor in the success of the origirethodologies,
that include zero (Equal weight) or one parameter (RM1994day, typical
portfolios of large financial institutions can include selghousands of posi-
tions, possibly more than 10°000. With such a size, it is dyeaot possible to
have a number of parameters proportional to the portfolie.sFor example,
this constraint eliminates all propositions to imprové niseasures by using a
GARCH(1,1) process. Beside simpicity, a small set of patamsewith fixed
values is also a good way to avoid overfitting.

In this paper, we introduce our new methodology, as well askity ideas
needed for market risk evaluation. We focus on the main istagjng at a con-
ceptual level and with the minimum number of formulas. Thaeder interested
to a more in depth presentation can read [Zumbach, 2006b].
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Figure 1: The annualized daily returns for the FTSE 100 index

2 Thebasicideasbehind therisk methodologies

The basics of the market risk methodologies is rooted intigical properties
of financial time series. Let us consider for example the Serges of the daily
returns for the FTSE 100 index, as shown in fig. 1. On this graph can
observe clearly both key features of empirical data, withusing any statistics.
First, the heteroskedasticltyan be observed, with periods of high volatility
and periods of low volatility. The clusters of high and lowa#tlity are also the
dominant feature for risk management, as they correspomperiods of high
and low risks. Second, the mean annualized volatitifpr this data sample is
around 15%. In the same unit, many returns have absolutevalbove 45%,
above 60% or even above 75%, corresponding respectivelett®at &, 40
and % events. This is the signature of a fat tail distribution toe teturns, with
large events having a larger probability to appear when @satpto returns
drawn from a Gaussian distribution.

Risk evaluation is tightly related to forecasts as risk seesially given by the
probability of large negative returns in the forthcomingipé. The period ex-
tends up to the considered risk horizth, say for exampl&T = 10 days. The
desired quantity is a forecast for the probability disttibn 5(r) of the possi-
ble returng over the risk horizo®AT. From this probability distribution (pdf),
the usual measures for risk can be computed, like the valusgkafvaR) or the

IHeteroskedastic means that a time series has a non conatiaice through time. The American spelling is
heteroscedastic, but is less faithful to the Greek root.



expected shortfall (ES). In practice, this problem is degosed into forecasts
for the mean and variance of the return probability distrdouby using

r[AT] = JAT] +8[AT] - € (1)

The returrr[AT] is a random variable corresponding to the possible pricegds
over the risk horizo®\T. Risk corresponds to large negative (positive) returns
for a long (short) position. The forecast for the mean pricenge is given by

ft and for the volatility byd. These forecasts depend on the risk horiAdn
The volatility forecast is a key part as it should capturetiberoskedasticity.
Finally, € is called the residual and corresponds to the unpredicgalrtelt is a
random variable distributed according to a pdf (€). The standard assumption
is thate(t) is an independent and identically distributed (iid) randeariable,
meaning that the residuals at two different tingéy ande(t’) are independent
and drawn from the same distributipar (€).

A risk methodology depends mainly @nand p(¢), and often the mean return
fLis taken to be zero. For example, the RiskMetrics RM1994 pukilogy uses
an exponential moving average scaledyWT for the volatility forecast, and a
Gaussian distribution for the residuals pdf. The “equalghi€imethodology is
quite similar, but the volatility forecast is computed wsone year of historical
daily return, scaled by/AT.

At a given timet, the return pdf is given by the pdf for the residuals, up to a
change of locatiop and size3. A subtle point is that even though the residual
has a given distributiomp(g), the unconditionaldistribution for the return is

not given by p(€) because the volatility forecast is time dependent and has a
distribution with fat tails. Therefore, the return pdf caavb fat tails even with
Gaussian residuals.

In order to validate a risk methodology, the above formula &dlved for the
residual

€= — (2)

Using historical data, the forecasts and the realized metoan be computed,
and therefore a time series for the residuals can be obtaidsihg these re-
alized residuals, the above hypotheses can be checked|yntmake is inde-
pendent and distributed accordingpe). In practice, one often tests thats
uncorrelated, and that at a given risk threshm)dor examplea = 95%, the
number of exceedance behaves as expected.

The crucial problem for long risk horizons is that back tegtbecomewery
difficult to achieve. This is caused by the shrinking samiae ®r the residuals

as the risk horizon increases. EssentiallyAdsincreases, there is not enough
data left to compute meaningful statistics. For exampléh Wb years of data
and arisk horizon oAT = 1 month, there are 180 independent residuals. At the
95% VaR, only~9 points should exceed the given threshold. £6r= 1 year,
only 15 independent data points are left, ar@@l 75 point should exceed the 95%
threshold. Clearly, doing statistics with this kind of sdenpize is difficult or
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impossible. Because of this sample size problem, risk noetlogies have been
tested essentially only up to 10 days. Let us emphasizettlsad ifundamental
limitation given by the available time series and the coasd risk horizons.
In short, it is a road block.

3 Our strategy to bridge the gap between 1 day and AT

We need an idea to turn around the road block created by tivkstg sample
sizes. This idea consist in adding more structures into tbelem using a pro-
cess. The process is taken with a time increndenf one day. It should capture
the essential properties of the financial data, in partidhia heteroskedasticity
and fat tails. Moreover the structure of the process shawldive only linear
and quadratic terms, so that we have some analytical tiittam particular,
forecasts can be computed using conditional averages.isTtaaly the crux of
the methodology as it allows us to relate daily data with dasts at any time
horizon. In this way, the process and its parameters canliiatad for time
horizons at which statistics are significant. Then, usirggdiocess at the time
scaledt = 1 day, the volatility forecasb|AT] at the risk horizomAT can be
computed. The forecasts depend only on the process pararfwhtach are in-
dependent ofAT) and are consistent across risk horizéis After extensive
testing for risk horizons at which there is enough data to mater significant
statistics, the structure brought in by the process allats weach much longer
risk horizons at which our testing ability is limited.

The residuals can then be computed as above, and their pespsan be stud-
ied. The desired good properties are that the residualsdepéendent and with
the same distribution for all assets, namely that they afe iSuch a study
should be done for a large set of time series, and as funcotibtie risk hori-
zonsAT. This strategy uses at best the daily data and their pregeartiorder
to compute an iid random variabdeat time horizomAT.

4 The process

The most salient property of financial time series is thatvblatility is time
varying and clustered. The cluster properties are measyréke lagged cor-
relation of the volatility. The decay of the lagged corrglatquantifies the
memory shape and magnitude. This measures the influencesotgatility
on forthcomming volatility, and is directly related to ousility to compute a
volatility forecast. With empirical data, the lagged ctat®ns decay logarith-
mically as 1-log(AT)/log(ATo), in the range from 1 day to 1 year (wifklp
or the order of a few years), and for all assets. Intuitivillis means that the

There is a general difference between independence ands$eace of linear correlation. In practice, we replace
the test of independence by the absence of correlationfiéoresiduals and their magnitudes. In the text, we do not
make the rigorous distinction between both concepts.
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Figure 2: The lagged correlation [of for 40 time series. The same color is used for broad asset
class, like FX, stock indexes, etc...

memory of the volatility decays very slowly. The universahlvior for the
volatility memory is quite remarkable, and is shown on figCkarly, the pro-
cess must capture the long memory of the volatility; for thapose we need to
use a multi-scales long memory extension of I-GARCH calledd-Memory-
ARCH (LM-ARCH) process [Zumbach, 2004]. The core idea fas fbrocess
is to measure the historical volatilities with a set of exgatial moving aver-
ages (EMA) on a set of time horizons chosen according to a gganseries.
These historical volatilities are summed to obtain theatiffe volatility that
influences the magnitude of the returns. Essentially, thd-feack loop of the
historical returns on the next random return is identicéhtofeedback presents
in the basic GARCH(1,1) process, but with the modificaticat thinvolves the
volatilities measured at multiple time scales.

Using Monte Carlo simulations, it can be shown that the ldgg@relations
decays appropriately for this process. Because the erapiadues for the ex-
ponentATy are similar for all assets, we can chodbe same parameters for
all assets. Our ability to take the same values for the psogasameters leads to
a very robust methodology. Moreover, if the number of veitgtcomponents is
one, the process is reduced to the I-GARCH process. Fimkllgotice that the
process does not include a mean volatility parameter, hikbheé GARCH(1,1)
process. Such parameters are clearly time series depeaartteniould lead to a
much more complex (and fragile) evaluation scheme. Instadade LM-ARCH
process, the volatility components with the longest timezoms play the role
of a mean volatility for the shorter time horizons.

As mentioned earlier, the process has been chosen so thedrid@ional ex-
pectations related to the volatility forecasts can be atellianalytically. After
these computations are done, the desired volatility fataz@aan be expressed
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Figure 3: The forecast weighMAT /&, i) as function of the lag. The dashed straight lines
correspond to the I-GARCH process, for which there is no dépacy omAT /ét. The decay
factors are given in the curve labels. The black curved lomeesponds to the long memory
process for a forecast horizon of 1 day, the colored curveis&rhorizon of 5, 21, 65 and 260
days.

as

02[AT](t) = % S A(AT/8t,0) r(t—idt). 3)

The weights\ (AT /&t,i) obey the sum rule

S A(AT/8t,i) = (4)

This key formula can be understood intuitively as followieTratioAT /ot is
the forecast horizon expressed in days. The leading terthédorecast is given
by ¢ ~ /AT /dt. This is the “usual” square root scaling for the volatilitythv
the time horizon. This term originates in the diffusive babaof the prices,
which is captured by the base random walk characteristiciopeocess. The
next termy; A r? is a measure of the past volatility constructed as a weighted
sum of the past return square. The weightAT /&t,i) are derived from the
process equations, and depend both on the kagd on the forecast horizon
AT /dt. These weights are plotted on fig. 3, for the I-GARCH proceskthe
long memory ARCH process. Intuitively, we expect that a skenm forecast
depends more on the very recent past, whereas a long terca$tréepends
more on the distant past. In the figure, we see how the weigkisced by
the long memory process follow just this expected behavepredding on the
forecast horizod\T /ot.
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Figure 4: The volatility forecast for the FTSE 100, for a tilregizon of one day (blue) and one
year (red). The volatilities are annualized.

Fig. 4 shows on the same graph the 1 day and 1 year volatitiégésts. The dif-
ference in the dynamic between the forecast is very clearotie day forecast
adjusts very rapidely to the changing market conditionsred® the one year
forecast has a smoother evolution. The quality of the Vdlaforecasts is the
major determinant factor for a risk methodology. Anotheeiasting feature is
that even at a one year horizon, the volatility forecast hagoatantial dynamic,
with a ratio of 3 to 4 between the forecasts during high andvolatility peri-
ods. This shows that even for such long risk horizons, néglgthis dynamic
by using a very long term mean volatility is a poor approximabf the market
behavior.

Regarding the mean return forec@$AT], the usual assumption is to neglect
this term. Our empirical investigations have shown thas ihot correct, par-
ticularly for interest rates and stock indexes. For interates, the yields can
follow a downward or upward trend for very long periods, oé thrder of a
year or more. These long trends introduce correlationgyalgmt to some pre-
dictability in the rates themselves. Similarly, stock iree follow an overall
upward trend related to interest rates. These effects arptitggtively small,
but they introduce clear deviations from the random wallkhwRCH effect on
the volatility. Therefore, we introduce autoregressiveiein the process equa-
tions and we derive their effects in perturbations in the AKCH process. The
autoregressive coefficients are essentially related teledions, and we eval-
uate them on the last 2 years of data. From these coeffictbetsnean return
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Figure 5: The daily residuals for the FTSE 100 index.

forecasii[AT] is computed, as well as the correction to the volatility tas.

The above description gives the main idea used to computedéded fore-

casts. Yet, substantial research is still needed to bubdsbalgorithms, tested
on hundreds of financial time series originating from arotimel world. The

set of time series includes the major foreign exchange ratesk indexes and
interest rates, covering all the major economies. The uarsub-problems are
studied as such, for example the volatility forecast is@atEd using appropri-
ate measures of accuracy. We take care to validate the gracesits (fixed)

parameters, as well as to incorporate the autoregressivis i@ a non para-
metric way. The readers interested in more details can semlpach, 2006b,
Zumbach, 2006a]. After we having good grasp of the proceddlarequired

forecasts, we can move to the study of the residuals.

5 Empirical investigation of thethe residual properties

With a methodology to compute the forecasts for the retudh\ematility, the
residuals can be computed using historical data and theuargh Fig. 5 shows
an example for the 1 day residuals for the FTSE 100. The casgrawith fig. 1
is particularly impressive, and shows that the heterositedity is correctly dis-
counted, at least to the naked eye.
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Figure 6: Probability distributions for the daily returneresiduals. The returns are normalized
SO as to have a unit variance. The Student distribution hagyBeds of freedom, and has been
rescaled to have a unit variance.

The next key point consists in studying the empirical préligtaensity pat (€)

of the residuals. Fig. 6 displays the probability distribution of the retarand
residuals, for the FTSE 100 used in fig. 1 and 5. The empirii@ show clearly
that a Gaussian distribution can be excluded as it does ovidar enough tails.
On the other hand, a Student distribution gives a good qgumi of pat (€).

In principle, the residuals distribution can depend on tBk horizonAT. In
practice, the distribution is essentially independet bf and the same number
of degrees of freedom = 5 can be taken for all time horizons. This choice
for the residual distribution completes the overall dggayn of the RM2006
methodology.

6 Back testing

Even if the direct figures comparison between fig. 1 and 5 isésgive, quanti-
tative measures of the risk accuracy need to be built. Itssrgal for long risk
horizons (both above figures are for 1 day, the easiest hdjizOur goal is to
compare quantitatively different risk horizons and vasionethodologies.

For this purpose, we introduce a functidfz), calledrelative exceedance frac-
tion, that measures the difference between the actual and exjyetative num-
ber of exceedances. The argumentalledprobtile, corresponds to the cumu-
lative density function of the return, and is such that @ < 1. It is directly
related to the risk threshold k= 1 — a. For a perfect risk methodology, we

10



must obtaind(z) = 0, namely at all risk thresholds, the actual relative number
of exceedances agree withThe main advantage of this back testing scheme is
that the whole distribution is tested (and not only a chooisirlevel). 3

In order to have an scalar measure of performance for onestmies, we define

dp=(p+1) 2p/01d2|6(z)| (z—-3)".

Essentially, the integral measures the overal departaned(z) = 0, and where
the weights given to the extremes can be chosen by the exppnkeow values
for dp are better. As we are interested in financial risk at the 95%girer, we
take large values for the expongntThe constant in front of the integral cancels
the leadingp dependency of the integral fo3(z)| = constant. In this way, the
numberd, can be directly interpreted as a weighted measure of disnogp
between theoretical and actual relative exceedances.

The above measure of performargigcan be computed for various time se-
ries, at a given risk horizoAT. In order to assess the global quality of a given
methodology, we need to average the quality measiyes a test set of time
series. This allows us to obtain overal quality measakgAT ) that can be
compared for different methodologies. The figure 7 shows ttia risk esti-
mates are improved by a facter3 when using the new methodology. Another
way to analyze these curves is that the new RM2006 methogaka6 months
risk horizon is as accurate as the existing methodologiasl@tdays risk hori-
zon. This is clearly a very large gain in term of the risk horig that can be
used. As mentioned above, we also expect that the residuaiglaA similar
procedure can be used to compute the lagged correlatiorsaiod ||, or for
z—1/2 and|z—1/2|. The most important measures are fgrand|z—1/2|,

as this is mainly sensitive to the discounting of the hetexdasticity. For the
price changes, the lagged correlationg phave values in the 5% to 30% range,
with a broad dispersion. These numbers are a direct meaktine wolatility
clustering, and the starting point for constructing a riskasure based an/G.

3The main idea used in back testing is the following: the thcal Student distribution allows to map
the empirical residualsto a random variable € [0, 1] given by the corresponding cdf

z= cdf(g) ze[0,1]

where cdf-) is the cumulative density function corresponding to a Studeéstribution with 5 degrees of
freedom. In more generality, for a complex portfolio withmiinear positions, a risk methodology gives
a forecast for the return distributiqu(r}j. The probability to observe a given quantilecalled “probtile”,

is defined by

"
z:/ dr’ p(r').

These two definitions are equivalent for a simple time series

If the risk methodology captures correctly the behaviouheffinancial time series, the empirical prob-
ability distribution p(z) for zmust be uniform o0, 1] (and iid). For a uniform pdf, the corresponding cdf
is linear. Therefore, we define the functidte) that measures the departure from a linear cdf by

0(z) = cdf(z) — z

where cdfz) is the empirical cumulative distribution for the probtiles

11
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Figure 7: The overall quality measude, for the four main methodologies. The date set con-
tains a total of 233 times series, divided into commaoditl®) (foreign exchange (44), stock
indexes (52), stocks (14) from France and Switzerland, Q»&8asls (Credit Default Swap) on
US firms (5), interest rates (100) with maturities at 1 day,dnth, 1 year and 10 years. The
time series are taken from all geographic areas.

The lagged correlations fgz— 1/2| are displayed on fig. 8. This figure shows
the improvement given by the new methodology, as well asrifegior results
of the “equal weight” scheme due to the incorrect weightifithe past returns.

7 Remarksand conclusions

All the above statistical tests show the consistent improeyas provided by
the new RM2006 methodology. Yet, it comes with a price whkhe added
complexity of the methodology. If the main idea is quite igfhé forward and
appears as a hatural extension of the existing methodalageessential contri-
bution to the overal final performances is made by the distbogiiof the small
returns correlations. This part has only been alluded tbénpresent paper. It
introduces its own set of analytical calculations in thecess setup as well as
non parametric statistical estimates in the actual impigat®n. All of these
factors contribute to the final increase of performance andpdexity of the
new scheme.

Because of the observed heteroskedasticity of the finaticial series, risk is
tightly related to volatility forecasts. The best voldiliforecast is obtained
using all the returns, as this preserves the entire infaoma©ur scheme using
a process with daily incrementdt = 1 day, allows us to extract the existing
information from the past within a clean framework. The langmory kernel
weights optimally this information, whereas an expone(tectangular) kernel
emphasizes too much the near-by (distant) past. On the lodinel, any scheme

12
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Figure 8: The overall lagged correlation ja— 1/2| for the four main methodologies. For a
given risk horizomAT, the lagged correlatiopat at lagAT is computed for each time series.
Then, we compute the mean|pfr| on our test set of time series.

that uses returns on longer time horizons is losing infolonatand therefore
leads to inferior forecasts. For example, using monthlyearly data to forecast
the one year volatility is essentially throwing away mostre information.

Finally, the idea of using a process to set the market riskéwork allows
us both to reach long risk horizons and to have consistdnegsmates across
horizons. This is important to analyze a portfolio at diéfierlevel of details ver-
sus different risk horizons. At the tactical level, say faclk trading desks, one
can analyze and optimize the short term risk of every postid\s one moves
to a coarser level in an organization, one becomes moreesttst in strategic
allocation and at longer risk horizons, say for example s@as the overal frac-
tion of equities versus bonds. The new RM2006 methodoldgyvalus to have
one consistent framework for the tactical and the strategicanalysis over a
broad range of time horizons.
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