
Future Risk
Christopher C. Finger
chris.finger@riskmetrics.com

Luis O’Shea
luis.oshea@riskmetrics.com

February 2006

In November, we discussed risk modeling of credit

spreads. We raised two broad questions. First, we

asked which market should we look to for informa-

tion. And when credit is traded in more than one

market, should we choose the one with the greatest

liquidity, or the one that most closely matches our

position? Second, we asked what made a time series

useful as a risk factor, and whether we could choose

among a variety of definitions of spread to obtain

the best properties for forecasting purposes. A third

question we could have asked, but did not, was how

we should model the volatility once we had obtained

a useful time series. We picked up that question in

our December note.

In this note, we ask the first two questions again,

but for futures contracts rather than credit spreads.

As we will discuss, there are modeling choices we

have applied for a long time which, while serving

us well broadly, are in fact questionable in specific

cases. Moreover, it is never a bad thing to return to

models that have been around a while, and revisit the

thinking that led us to those choices in the past.

Financial futures

There are a myriad ways to partition the many fu-

tures contracts. For our purposes, we first make the

distinction between financial futures—those futures

contracts that entail the delivery of what is essen-

tially an investment product (such as a bond or eq-

uity index)— and non-financial futures—those that

entail delivery of something (such as energy or food)

whose primary purpose is to be consumed.

With financial futures, the fact that the underlying

deliverable is an investment product means that we

have a good sense of the benefits that accrue to the

holder of the deliverable. A bond pays a coupon,

for instance, while an equity index pays a dividend.

Moreover, we may observe prices of bonds of vari-

ous maturities, from which we can build a discount

curve, and have an idea of the market’s expectation

of how a particular bond will evolve through time.

It is thus possible to build a native model for finan-

cial futures—a model that uses arbitrage arguments

to connect prices in the deliverable securities to prices

of the futures contracts. This connection between the

cash and futures markets gives us a first guess at an

independent futures price, but more importantly al-

lows us to utilize risk forecasts on the deliverables

to also forecast risk for the futures contracts. More-

over, the connection allows us to articulate sensitiv-

ity measures and stress tests consistently across cash

and futures positions; it is natural to shift the interest
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rate curve by some amount and reprice both types of

positions.

While the native model is attractive for its consis-

tency and its reduced set of risk factors (one interest

rate curve is used to model both cash and futures

positions), it is incomplete, in that there is residual

risk in the futures that is not described by the na-

tive model; there is a well known basis between the

forward prices inferred from the cash market and the

actual futures markets, and this basis in itself is risky.

Some of the basis can be explained by the fact that the

cash and futures markets are not perfect substitutes

for each other.1 On the other hand, the two markets

are distinct, with different participants, different liq-

uidity, and different supply and demand effects; thus

some portion of the basis is purely technical.

The discussion of the adequacy of the native model

is similar to our discussion of spread risk modeling

across bond and credit default positions. An investor

who above all takes long positions in Treasury bonds,

and sees the cash and futures markets as equivalent

ways to express interest rate views, should opt for

model parsimony and risk forecasts based on the best

available source of information.

For these investors, the most common issue we con-

front is whether futures positions imply increased

leverage, and therefore increased risk, at least rela-

tive to the amount of capital. Again, this depends

on the investor: sometimes investors take on futures

as an efficient way of gaining a leveraged exposure;

other investors treat futures as a substitute for a di-

rect investment in the underlying, and match their

futures position with a cash position in order to avoid

increasing leverage.

Investors actually trading the basis, through long

bond and short futures positions, cannot afford the

luxury of model parsimony, as their primary risk is

to the factor that the pure native model ignores. For

this class of investors, the natural extension is to treat

the basis itself as an explicit risk factor, while main-

taining the consistency that the native model affords.

Non-financial futures

As we move away from futures on financial securi-

ties, and into the realm of energy, metals, and agri-

cultural products, we are forced to make a significant

change in our modeling approach. For these futures

contracts, there are, for the most part, limited cash

markets from which to infer prices; the futures con-

tracts themselves are our primary (if not only) source

of market information about prices of the commodity

at any time other than the present.

With bonds, we can observe with certainty the cost

of financing a cash position, the benefit (in terms of

earned interest) of owning the bond outright, and the

price of bonds of slightly longer or shorter maturity;

all of this information goes into the arbitrage argu-

ment and leads to at least a good starting point for

the price of a bond futures contract. For non-financial

futures, one approach is to apply a similar logic, ex-

amining the differences between owning a physical

asset and owning a futures position, and using these

differences to price the future. These differences in-

clude the cost of storing and transporting the com-

modity, both of which the owner of the physical asset

must bear, as well as the benefit (referred to some-

times as the convenience yield) of owning the asset,
1For instance, the Treasury bond futures contracts include a cheapest-to-deliver provision, in which the holder of the future may

choose to deliver the cheapest of a defined set of bonds; clearly, the owner of an actual bond position does not have that option.
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such as having the flexibility to consume or sell the

asset at any time.

Unfortunately, these quantities (at least other than the

storage cost) are all much more difficult to quantify

than their analogues for bonds. In the end, mod-

els that apply the convenience yield logic are typi-

cally run in reverse: we observe the futures and spot2

prices, and infer the convenience yield such that our

model recovers these prices. We may try to make

inferences about the convenience yield, but this is a

quantity that is inferred from the futures prices, rather

than a fundamental value in itself.

Risk modeling

Where this leads us, from a risk perspective, is to

modeling based on the time series of the futures

contracts themselves, rather than (wholly or partly)

on the deliverable instruments. Simple enough, we

might think: we hold positions on individual futures

contracts, so we simply model risk based on the his-

torical price series of those contracts. In other words,

if we hold the June 2006 crude oil contract, we look at

the historical price fluctuations on this specific con-

tract, and make forecasts of how it is likely to move

over the next days or weeks.

This approach is in fact quite sensible, and often ap-

plied in practice. For risk forecasting, though, it suf-

fers from two drawbacks. The first is practical: for

new contracts, by definition, there is no price history.

This implies the need to use proxies, or else simply

wait until enough history is available.

The second drawback is more subtle. It is not clear

that the historical price moves in the June 2006 oil

contract are the best source of information to fore-

cast fluctuations in our position in the contract as

of today. This issue is not unique to futures. For

bonds, we recognize that the volatility in general de-

creases as the bond ages (and its duration decreases);

thus, rather than forecasting based on the bond price

history, we create a time series of constant maturity

interest rates, and forecast based on these. We must

at least question, then, for futures, whether we can

do better than simply forecasting based on the price

history of specific contracts.

We should remark that even under the relatively sim-

ple historical simulation framework, we must con-

front this issue, and specify how we interpret and

apply historical price changes. Consider a risk fore-

cast, performed on February 14, 2006, for a position

in the June 2006 crude oil contract. Under historical

simulation, we apply the price changes that occurred

over the prior year. One data point consists of the

price changes on March 23, 2005: the June 2006

contract fell by 1.19, while the August 2005 contract

(which had a similar time to expiry on March 23 as

the June 2006 contract has as of our analysis) fell by

1.74. Which of these two price changes (which differ

by 50%) is most appropriate to apply? Essentially,

this is the same question we have stated above.

Crude oil and heating oil

Complicating this picture further is the fact that not

all commodities behave similarly. To illustrate this,

consider heating oil and crude oil. Both are subject

to the same broad supply dynamics; the demand for

crude oil, though, is roughly constant throughout a

given year, while the demand for heating oil is clearly
2That is, the price for immediate (or an approximation thereof) delivery
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Figure 1: Price versus time to expiry for crude oil and heating oil futures contracts. Data observed in June

(dotted lines) and December (solid lines)
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higher in the winter than the summer.

The impact of this difference on the relative price

dynamics of the two commodities is evident in Fig-

ure 1. On the left, we plot the prices of crude oil

futures against time to expiry; on the right, we do the

same for heating oil. For crude oil, the shape of the

crude oil curves evolve slowly in time, moving from

the classic backwardation (that is, downward slop-

ing) profile to contango (upward sloping), but there

appears to be no regular pattern to the evolution.

For heating oil, though the term structures follow

the same general upward or downward sloping pro-

files as for crude oil, the most noticeable character-

istic is that the profiles are best characterized by the

month in which they are observed. Observed in June,

the prices of futures expiring in six months time are

higher than those of futures expiring in one or twelve

months; observed in December, prices are higher for

twelve- than for six-month futures. This behavior is

not random, but a regular pattern, and entirely con-

sistent with our intuition about demand. We say that

heating oil prices exhibit seasonality, while crude oil

prices, at least based on these figures, do not.

Sources of volatility

Forecasting volatility for non-financial futures is

complicated by the fact that volatility comes from

three broad, but distinct, sources: overall market

fluctuations, the maturity effect, and seasonality. The

market fluctuations are common to all financial time

series, and modeling of this phenomenon was the

subject of our December note. The other two effects

are particular to commodities.

The maturity effect is a decreasing pattern in volatil-

ity with respect to time to expiry. The effect was a

hypothesis of Samuelson (1965), which went against

the standard models of the time, but which has

since been validated empirically and incorporated

into commodities models.

Seasonality in volatility is a pattern in which con-

tracts with expiry at particular times of the year are
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inherently more volatile than those with expiry at

other times. Importantly, seasonality in volatility is

not necessarily the same effect as the seasonality in

prices discussed previously. It is reasonable to ex-

pect that the two might go hand in hand, but this is not

imperative; moreover, the two effects have different

implications on modeling.

The appropriate risk model, and in particular, the ap-

propriate time series from which to base forecasts,

for a particular commodity depends on the relative

importance of the three sources of volatility, as well

as on the characteristics of the prices themselves. In

order to investigate the volatility sources, we exam-

ine the volatility computed over short (50 day) peri-

ods for individual commodity futures contracts.3 We

examine the term structures of volatility observed at

different points in time.

As we observe the volatility term structures, their lev-

els will certainly fluctuate; this is the market effect.

Beyond this, we are interested in the shapes of the

term structures. Under the presence of the maturity

effect and no seasonality, the volatility term struc-

tures should display a downward slope. The shape

should evolve, but there should be no specific signa-

ture of the term structure in any specific month.

On the other hand, under the presence of seasonal-

ity but no maturity effect, we should see patterns in

which the volatility term structures observed in June

of different years should be similar to each other and

distinct from the term structures observed, in De-

cember. Moreover, if it is the case that December

contracts are inherently more volatile than June con-

tracts, then observing volatilities in December likely

produces a downward sloping term structure (from

which we might erroneously identify the maturity ef-

fect). Observing volatilities in June, though, should

produce the opposite.

We plot the volatility term structures of crude oil con-

tracts in Figure 2 and heating oil contracts in Fig-

ure 3. Crude oil exhibits the classic maturity effect.

The effect was most pronounced in the months af-

ter September 11, 2001, and is less pronounced re-

cently. On average, we see that there is roughly a

ten percent difference in volatility between nearby

and one-year contracts. At typical levels (30%), this

difference could account for one third of a contract’s

total volatility.4 And as with crude oil prices, there

is no systematic pattern to the term structures, but

rather a slow evolution through time.

For heating oil, whereas for prices, we saw strong

seasonality coupled with a weak tendency toward

backwardation or contango, we see for volatility a

strong maturity effect coupled with weak seasonal-

ity. The maturity effect has comparable magnitude

as for crude oil, with a one year difference in time

to expiry accounting for roughly a ten percent differ-

ence in annualized volatility. We can also see a weak

seasonality: the term structures observed in June and

September decrease monotonically, while those ob-

served in March and December decrease until about

one year to expiry, and then turn up. This signature

of the term structures appears persistent across the

six years presented in the figure.

3These figures should not be interpreted as forecasts, but simply as characterizations of how volatile prices are at a point in time.
4In fact, the ten percent difference understates the problem, since we are comparing volatilities realized over periods (two months)

that are far from short relative to the one year over which we are making the comparison. This actually smoothes the effect somewhat.
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Figure 2: Crude oil futures contracts. Volatility (past 50 days) versus time to expiry
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Figure 3: Heating oil futures contracts. Volatility (past 50 days) versus time to expiry
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Forecasting implications

Recall that our main goal here is to forecast the range

of likely price moves for a specific futures contract,

whether by volatility forecasting or by historical sim-

ulation. In either case, the prominent maturity effect

is of primary concern. Under historical simulation,

we conclude that the most relevant price changes to

apply are those that come from historical changes

on a contract with similar maturity to what we hold.

In our earlier example, we were forecasting, as of

February 2006, the price changes in the June 2006

contract. From the March 23, 2005 price data, the

most relevant price change to apply is not that from

the June 2006 contract itself (which at the time of the

data had fifteen months to expiry) but rather the larger

price change from the August 2005 contract (which

at the time had roughly four months to expiry).

For more formal volatility forecasting, the problem

is a bit more subtle, but the intuition is the same:

we should base our forecasts on the most relevant

set of historical returns. Standard volatility forecast-

ing methods are intended to capture market fluctua-

tions, but typically assume no systematic evolution

of the volatility. In our case, in addition to the mar-

ket fluctuations, we have two systematic effects: the

maturity effect, which implies that contracts become

more volatile as they age, and seasonality in volatil-

ity, which implies that contracts expiring in some

parts of the year are systematically more volatile than

others.

Forecasting volatility based on a weighted average of

past squared returns, we encounter the problem that

some of the return data derives from a time period

in which the contract had inherently lower volatil-

ity. We could attempt to address this through the

weighting scheme; its purpose, however, is to utilize

the historical data optimally to capture market fluc-

tuations, not to handle systematic effects. To rectify

this problem, we have two options: explicitly incor-

porate the maturity effect and seasonality into our

volatility forecasts,5 or transform our price data into

something that presents only the market fluctuations

in volatility, and neither of the systematic effects.

Price transformations

At this point, we introduce another modeling con-

straint: we would like, to the extent possible, to ap-

ply a consistent modeling approach across all asset

classes. This steers us to the price transformation

approach. Further, this approach resolves our issues

with historical simulation, in that it provides a spe-

cific set of shocks to apply. The key, of course, is

how we transform the prices. Our goal is to obtain a

transformation that accounts for the maturity effect,

is robust to commodities with strong price seasonal-

ity, and is amenable to standard volatility forecasting

schemes; we will not address volatility seasonality

for now, as it appears to be of secondary importance.

An obvious option is to use time series of “constant

nearby-ness”. For example, we create a time series

of returns on the “first nearby” contract by taking

each day the return on whichever is the nearest con-

tract to expiry at that time; similarly, we create return

time series for the second, third, and so forth nearby

contracts. With this transformation, our volatility

forecasts are based on historical returns on contracts
5For example, we could fit a long-run average level of volatility as a function of time to expiry and delivery month of the contract,

and then use more standard volatility forecasting technology to model deviations from this average level.
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of similar, though not precisely the same, time to ex-

piry. To the extent that the maturity effect is very

steep, then the reduction of time to expiry within

a specific month could pose problems; and if one

contract behaves differently from the next, then the

discrete jump across contracts may also give us dif-

ficulties.

To move beyond this first approach, we must recog-

nize a separation of the notions of risk and valuation;

the value of a position in a specific contract clearly

comes from the price of that contract, while the risk

on the position may well be characterized by a his-

torical data other than that contract’s prices.

A second transformation approach (one that we have

applied historically) is to calculate prices on hypo-

thetical constant maturity futures contracts: on each

day, for example, we calculate a one month futures

price by interpolating between the two contracts that

straddle one month to expiry. This approach ad-

dresses the maturity effect more precisely, in that the

returns we observe always come from (albeit hypo-

thetical) contracts with the same time to expiry, and

ensures that the move from one contract to the next

within the time series is smooth. As with the prior

approach, though, this time series does not represent

an investable strategy.

Of greater concern, this approach leads to biased

forecasts in the presence of price seasonality. Con-

sider the hypothetical constant six-month maturity

heating oil futures price. From Figure 1, we know

that this price will increase from December (when the

six-month maturity contract is the June contract) to

June (when the six-month maturity contract is the De-

cember contract). Standard volatility forecasts uti-

lize a weighted sum of past squared returns, with the

assumption that the mean return (that is, the drift in

prices) is negligible. Here, the price drift is certainly

not negligible, and thus leads to overstated squared

returns, and consequently a biased volatility forecast.

What is most desirable is to maintain the constant

maturity aspect of the previous approach (and thus

address the maturity effect), but to avoid the bias

from calculating returns across a series of prices that

is systematically increasing. We can achieve this by

reversing the order of the averaging (that is, the in-

terpolation across two futures contracts) and the re-

turn calculation. Rather than averaging first, and then

computing returns on hypothetical (and biased) price

series, we may compute returns first (on the actual

contracts) and then average to maintain a constant

effective maturity.

This logic leads us to the notion of an investable con-

stant maturity strategy. To do this, we create a one-

month index as follows: at the beginning of the time

series, we invest a total of $100 in the two nearest

contracts, in such proportion that the average time to

expiry of the total position is one month; each sub-

sequent day, we sell some of the shorter contract and

buy some of the longer one in order to maintain the

one-month average maturity. The returns on this in-

dex address the maturity effect, but should not have

the same structural drift as the prior approach for

commodities with strong price seasonality.

Ultimately, the best transformation is the one that

leads to the best risk forecasts. The investable indices

have no obvious deficiencies, but empirical tests are

needed. Furthermore, it is not clear that any of these

approaches would perform well in the presence of

strong seasonality of volatility. Whether there is a

transformation that addresses this feature is a topic

for further research.
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