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Abstract

A new methodology to evaluate market risks is introduceds ttesigned to be more accurate than the existing
methodologies, and to be able to reach long risk horizongo ume year. Consistency across risk horizons is
obtained by building the methodology using a long memory AREocess to compute the required forecasts.
A large data set covering the main asset classes and geamabaleas is used to validate the various sub-
components of the methodology. Extensive backtestingyysiabtiles is done to assess the final performance,
as well as the contributions of the various parts. One keyfifadive result is that the new methodology applied

to a risk horizon of three months is more accurate than therexptial moving average scheme at a risk horizon
of one day. This quantitative improvement allows us to asalysks in a portfolio both at tactical and strategic

time horizons.
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1 Introduction

Nowadays, risk management is an integral part of the finbmoad. For market risk, the
goal is to assess the magnitude of large potential lossegpaortéolio due to adverse price
fluctuations. One of the accepted basic methodologies wableted in a seminal paper
[Mina and Xiao, 2001] by researchers at JP Morgan (see alsog[sihd Xiao, 2001]). This
methodology was used for the internal risk control inside ltank, and its public disclosure
raised a strong interest in the financial industry. In tutdeads to the spin-off of the risk
control group, and subsequently to the creation of a whalastry around risk management
for various financial institutions. We call this methodoyd@M1994 Another important risk
methodology is called thieistorical methodology, and is essentially a resampling of the his-
torical returns. Beyond the basic methodologies, the so#wools developed for computing
risks have become very sophisticated in order to allow ferdiversity of structured products
and complex derivatives. Moreover, the dependencies dn hsk factors must be computed
for sensitivity analysis or scenario simulations. For eglanall the bonds and derivatives are
dependent on interest rates, and changing one rate wileimfel simultaneously many assets
in a portfolio.

Since their inception in early nineties, the basic methogigls have stay unchanged. For
the RM1994 methodology, the computation relies on the nreasiuthe volatilities and cor-
relations present in the historical data. These quan@tiescomputed by a simple estimator
given by an exponential moving average (EWMA). For the mistd methodology, one year of
equally weighted historical data is used. Using a Gaussianmaption for the residuals allows
us to perform Monte Carlo simulations or to compute tail aaibties. The key advantage
of these basic methodologies is their simplicity, concalpyuand computationally. With the
EWMA weighting, the volatility and correlation estimatoggkends on one parameter, namely
the decay factor of the exponential. For assessing risk aealay horizon, empirical studies
show that the decay factor 0.94 provides a good estimatdlfassets. Having only one pa-
rameter for all time series contributes to the simplicityled RM1994 methodology and to its
wide acceptance.

The need for a volatility forecast in a risk computation isteml in the heteroscedasticity of
the financial time series. Because the volatility is timeyirag, the estimation of the tail prob-
abilities requires a forecast for the (cumulative) voigtilintil the considered time horizon
AT. The RiskMetrics EWMA weighting scheme, scaled ¥T, is a simple and effective
volatility forecast. Yet, the optimal decay factor must loguated to the desired horizdx .
This occurs because a long term forecast must use more iafimmfrom the distant past than
a short term forecast. This is one drawback of the currenhaggtiogy, as the main parameter
should be adjusted for each risk horizon.

Since the inception of the original RiskMetrics methodglagur knowledge of financial time
series has progressed in several directions.

e The volatility dynamic is better understood. In particutae long memory of the volatil-
ity is observed in all time series. A quatitative measuravsmgfor example by the lagged
correlations of the squared returns, and the correlatiomglaserved to decay as a log-
arithm of the lags. Notice that a GARCH(1,1) process has pomantial decay for the
volatility correlations.

e The probability distributions of the returns have fat tagigen at time horizons of several
days, and with tail exponents in the range 3 to 5. The impbtoabf this observation
on risk estimates is a bit subtle, because of the differemteden the unconditional



probability distribution of the return and the distributiconditional on the volatility
forecast. As explained later, the relevant distributiona@ns the conditional distri-
bution, as captured by the residuals- r/G. As shown in sec 14, the distributions
for the residuals are observed to also have fat tails, albight a slightly larger ex-
ponent than the unconditional returns. The Gaussian asgmmysed in the standard
methodologies is at odds with these empirical observati®@everal authors (see e.g.
[Pafka and Kondor, 2001, Bormetti et al., 2006]) have dggchis aspect of the standard
methodologies, and have proposed to use fat tail distobatinstead of a Gaussian.

¢ \Dlatility forecasts have progressed. Particularly ratevto the application in risk eval-
uations is the connection between processes and forettestistinction between linear
and affine processes and the construction of processesawgmemory [Zumbach, 2004,
Zumbach, 2006b].

The purpose of this paper is to incorporate the state of thanakviedge in risk management,
while retaining the simplicity in the methodology that catited to the success and wide
acceptance of the original RiskMetrics scheme. The key isléa introduce grocessthat
leads to simple volatility forecasts, and that incorpaatee long memory observed in the
empirical data. Moreover, when the process is chosen to I&&RCH(1) process, the new
scheme reproduces the original EWMA computation. In thisseethe new scheme is an
extension of the current accepted RM1994 methodology.

Using a process to infer volatility forecasts has anothgrddvantage: the same process and
parameters can be used for every forecast horl¥bn In this way, one gains a strong con-
sistency in the methodology, for all horizons. Thanks tg ttonsistency, long term horizons
can also be dealt with, even though the amount of indepert#aatis clearly insufficient to
validate the forecasts using backtesting. More precigely,ambition is to be able to com-
pute meaningful risk figures up to a one year horizon. Thid ixitical interest for pension
funds or insurance firms that have a basic business cyclesoyear. Yet, the whole financial
community will benefit from being able to assess its risk foritons longer than a few days.

Dealing with risk evaluation for medium to long term horizada clearly a very difficult topic.
The difficulty can be measured by the scarcity of the pukibeat mostly originating from a
group at the ETHZ [Embrecht et al., 2005, McNeil and Frey,d@hd [Diebold et al., 1998].
The origin of the difficulty can be understood from the follogydiagram.

aggregation
return ® o
r[1d]/o6[1d] r[AT]/G[AT]
??7?
residual P — = ®
ot = 1 day AT

On the left side is the one day horizon (denotel), lat which most of the data is available.
On the right side is the desired risk horizad, say for example one year. The top line
corresponds to the returns. Moving from one day returnr&Ttadays returns can be easily
done by aggregation, for example a one year return is a surdlt@nsecutive daily returns.
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The bottom line corresponds to the residuedsT | = r[AT]/G[AT]. This is the variable taken
to be iid, and for example drawn randomly in a Monte Carlo VaRusation. Investigating its
properties is the key to understanding risk. For exampéefdhecasth used in computing the
residuals must be such thats iid, and this needs to be validated by backtesting. It Gan b
done at a daily horizon (vertical left arrow) because theeniough data. Yet, it is not possible
to carry the same program on much longer horizons, becaastath become too scarce to do
the required backtesting: clearly, it is impossible to gtimtecasts and tail events with only
10 to 50 data points. An alternate route is the bottow dashe@vabut residuals do not have
an aggregation property. To compute risk at long time hosza@quires reaching the bottom
right corner, but both routes are blocked (lack of data orggregation property).

Introducing a process at a daily frequency allows us to westilis dilemma. The process
uses daily data and induces forecasts for any time horizéwe fdrecasts can be computed
analytically and do not contain new parameters. This is iaportant as the framework can
be tested for time horizons where enough data is availabéa the consistency brought in
by the process allows us to reach time horizons where batidas very limited. This key
idea can be expressed in the following representation bingahother way to reach the risk
horizonAT for the volatility forecast.

aggregation
return ® °
process + cond.expt,
volatility
r[1d]/o6[1d] r[AT]/G[AT]
residual ° ®
ot =1 day AT

In [Embrecht et al., 2005, McNeil and Frey, 2000], a somewlmatlar line of thought is used.
The authors use a GARCH(1,1) process, supplemented witihéoeetical aggregation rules
for the GARCH(1,1) parameters derived by [Drost and Nijmk893], in order to compute a
one-step volatility forecast for the aggregated returrhatrisk horizonAT. This approach
suffers from a number of drawbacks. First, a GARCH(1,1) psschas an exponential mem-
ory, and therefore does not correctly capture the slow detdle lagged correlations. In
other words, the volatility forecast does not use at besattadable information. A second
drawback is that the process cannot easily be changed aggregation rules are known only
for the GARCH(1,1) process. This makes it difficult to incorate the long memory, for ex-
ample. Third, the mean volatility is one of the process pa&tans and is strongly time series
dependent. The GARCH(1,1) process depends on three paramEhe process equations are
affine (in the return square and volatility square), and thditave term, usually denotealy or

w, fixes the mean volatility. One can argue about a “one sizallitapproach for the other
two parameters, but this will not work for the mean volagiliFor a portfolio, one has a pa-
rameter estimation problem with a size that grows with thalper of time series. By contrast,
the I-GARCH(1) process equations are linear instead (irrehé&n square) and depend only
on one time decay factor (see page 9 for the difference betlieear and affine processes).
This decay factor can be chosen so as to give good volatiigchsts for most time series.

A risk methodology should be rooted in the empirical projsrof the financial time series.
A thorough understanding of the “stylized facts” is neededrider to select the appropriate



model and parameters. Because a risk methodology is afgplisd many time series, it is
essential that the model be “universal”’, namely that it cegst the generic properties of the
data. It should also includes a quantification of the diffiéqgroperties in order to select the
most appropriate level of description. To some extend,dmgl a risk methodology is an
engineering problem: one has to pick the important partsreaglliect smaller or particular
effects. For this purpose, large scale empirical studiesilshbe done, the generic features
described, and possibly approximations made. This approantrasts with an academic
study, where often a rigorous answer to a well posed queistsught after. For these reasons,
a large part of this paper is devoted to empirical studienafdended set of time series, to
check that our description is appropriate. Our aim is notdaigorous (say in the sense of
hypothesis testing), but to be “overall quantitativelyreat”.

Building a risk methodology involves many dependent paetated to the forecasts, corre-
lations and residuals. In the end, the empirical result®démn all the parts together, and
it is in general not possible to completely extract the wasisub-components for individual
testing. In other words, a risk methodology cannot be buitt & completely constructive ap-

proach. The sub-parts that can be isolated are mainly tleeigisn of the lagged correlations
for the returns and absolute returns, and the forecastfiéoreturn and volatility. From this

dependency structure follows the organization of this pape

The next section introduces the methodology (Section th&)process with the related fore-
casts (Section 2.2) and the residuals (Section 2.3). Therdheal part is completed by the
Appendices A and B which contain the detailed analytical potations. The empirical in-
vestigation is done using a set of time series detailed iti@e8 and covering most of the
asset classes and world geographic areas. The empiritas paganized roughly around the
sequence: price (Section 4) volatility (Section 6 and 7)— return (Section 8 and 9}
residual (Section 10 to 14). Each section is devoted to oeeaet property (lagged corre-
lations, forecasts, variances, pdf, etc...). Then, aligileees are put together for backtesting
in Section 15. The presentation of backtesting is divideslipsections concerning the return
forecasts (15.1), volatility forecasts (15.2), residyad$ (15.3), and how the performances
change as the various ingredients are added in the metlgyd(6.4). The conclusion sum-
marises the new risk methodology and the empirical findingse appendix A presents the
detailled analytical computations related to the long mgmAdRCH process, and the appendix
B the analytical part related to the AR term in the proces® fhinee estimators used to com-
pute correlations are presented in Appendix C, with a shecudsion of their main properties
regarding robustness and computation time. Finally, afde¢guently ask questions is given
in appendix D.

2 Methodology

2.1 Sketching theidea

In this section, we present the key ideas and equations fiog ggiadratic processes for risk
evaluations. The detailled derivation of the forecast &qua is given in the appendixes that
can be skipped in a first reading.

Our strategy to evaluate risk at a time horizbh is:

e To model the data d@t = one day using a (long memory ARCH) process.

¢ To infer the required mean return and volatility forecasttha desired risk horizoAT
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by using the process properties and the aggregation of tinnse

e To use a location/size/shape decomposition for the prétadbistribution of the returns.
The location and size correspond respectively to the maamrand volatility forecasts
derived from the process. The random variable appearirtgsrdecomposition is called
the residuals.

When building a new risk methodology, the last step is usdterother direction using his-
torical data. The historical returns are standardizedeatitk horizonAT using the forecasts
for the mean returns and volatility, in order to obtain thist@rical) residuals. The empirical
properties of the residuals can then be studied.

The one business day horizon at which the data are availaftlerioted bydt. In the risk
industry, it is common to work with daily data as they takeedara natural way of the daily and
weekly seasonalitiés Yet, in our derivation, nothing is specific to this partiautime horizon.

It would be easy to take a shorter time step for the proceesjged that the seasonalities are
properly discounted. The desired risk time horizon is ded@lyAT, and in principle can take
any value withAT > &t.

The process follows a standard ARCH set-up:

X(t+8t) = x(t)+r[dt](t+dt) (1)
Bt (t+08t) = Her(t) + Oer(t) €(t 4 t) 2)

where

e X(t): the transformed price. For most securitiess the logarithm of the price(t) =
In(p(t)), but the transformation is slightly different for bonds€section 4).

e r[dt]: the return for the time horizo® = 1 day.

e Ly: the mean return in the next time increment. In most procestiesd, this term is
zero, because the empirical lagged correlation for thermatunegligible. As we will
see later in sec. 8, neglecting this term is not a valid assomyparticularly for interest
rates.

e Oy the effective volatility in the next time periadt. This is the key term that models
the heteroscedasticity of the financial time series. We idenshe class of processes
wherea?, is a linear function of the past squared returns

02, (t) = _%A(i) r2(t—idt) AGi) >0 (3)

with 55 A(i) = 1.

e &£ iid random variable with distributiop(€). The distributionp(g) must be such that
E[e]=0andE [ ] =1.

The mostimportant property of the process is embedded weélightsA (i). When the weights
decay logarithmically

()
Ai)~1- In(To) (4)

1A seasonality is a statistical pattern that repeat itsééfraf given time interval. In financial time series, they aamainly with a daily
and weekly frequency, corresponding respectively to thilg dativity cycle (day/night) and weekly activity cycle @rfinancial transactions
during the week-end). The intra-day volatility behaviodi@minated by these two strong seasonalities and the hkéelasticity can be
observed only after discounting them.




the lagged correlation df| decays also logarithmically. This is precisely the long rogm
observed in the financial time series we want to capture. @wotiner hand, when the weights
decay as an exponenti&{i) ~ exp(—i &t/1), the process reproduces the EWMA used in the
current RiskMetrics methodology. Finally, a constant (i) = 1/ina UpP to the cutoff
imax = 260 reproduces the “Equal Weight” model which uses one yieagually weighted his-
';orical returns. In this way, our framework includes all therently accepted methodologies

The long memory process we consider is naturally expresseddifferent form. A set of
(historical) volatilitiesoy are evaluated on geometric time horizags

w = up“t k=1 K
W = exp(—ot/tx) (5)
GR(t) — bk O2(t— &)+ (1 r(h).

Essentiallypgy is an exponential moving average of the return square, vatiagacteristic time
Tk. The effective volatility is obtained as a sum over the histd volatilities, with weights
that decay logarithmically

Kmax
a%t) = 3 wog(t) (6)
k=1
1 In(tk)
M“EO‘WW) )

The normalization constat is chosen such thgtywi = 1. The model is conveniently pa-
rameterized by the three time intervals (logarithmic decay factor)t; (lower cut-off) and
Tk.ax (UPPer cut-off). The parametgr does not influence the properties of the process for
p~ 1, and we takg = /2. In essence, this model is a sum of EWMA (exponential moving
average) over increasing time horizons. This structuréucap in a simple way the multiscale
structure of the markets, with market participants actiragnty at intra-day, daily, weekly and
monthly time horizons. By unwinding the EWMA in the definitiof ok, and inserting in
eg. 6, the form 3 is obtained with

kmax .
AW = 3w (11 1
=1

An important distinction in the analytical form of the valay process is the affine versus
linear structure. A linear volatility process has a stroetof the form 3, where the volatility
square is a linear combination of the past returns squan hffine process, this structure is
modified by an additive term that fixes the mean volatility

02,(t) = WeoG? + (1—W°°)Z))\(i) r2(t—idt). (8)

The parameter is equal to the unconditional mean volatility, angd is a “coupling constant”
that fixes the convex combination between a constant meatilitgland the auto-regressive

2This is not the most general formulation of quadratic véitgtmodel, as we include only one day returns at equal timenddel with
different return time horizons, but still at equal time, igem by

Ogg(t) = A, ) r[jst)(t —it)
=2

and is explored in [Zumbach, 2004]. We restrict ourself ®fitrm 3 in order to keep efficient the numerical computatiofithe forecast.
When returns at longer time horizons are used in the protiessplatility forecasts cannot anymore be expressed as.ihz



volatility term. For a given memory structukéi), the linear and affine processes can be build.
For example, with an exponential memory, the I-GARCH(1his linear model whereas the
GARCH(1,1) is the affine version. The number of parametdferdiby 2, corresponding to
o andw,. Clearly, the mean volatility parameteris time series dependent. For risk esti-
mation on large scale, it is not possible to have a number @npeters proportional to the
number of assets in a portfolio. In order to avoid this badrestion problem, we have to use
linear model. This criterion eliminates the (affine) GARQH() process and its generaliza-
tions. As processes, the asymptotic properties of therdimemlels are not well defined (see
[Nelson, 1990] and [Zumbach, 2004] for a detailled disoussf this point). Yet, as we use
the process equations to derive a forecast, this long teympatstic subtlety is irrelevant for
our purpose.

2.2 Forecast using processes

In principle, any process induces a forecast through cmmgit expectations. For quadratic
processes, the integral implied in the conditional exgexia

E[r?8tt) | Q)] >t

can be computed analytically. Because the class of prog@sseonsider is given by iterative
equations (from the statestatthey give the states &t ot), iterative equations are obtained
which express the forecastdtas a function of the forecast Ht— 6t. These equations can
be iterated untit’ = t. If the scheme is straight forward, the actual analyticahpatations
are a bit involved because of the multiple terms in the p@egmiations. The details of these
computations are given in the appendix A.

Inferring the forecasts from a process has two key advastdgiest, the forecast inherits its
properties from the process. For example, if the procedsod sr long memory (i.e. with an
exponential, power law or logarithmic form far), the forecast will have the same memory
structure. This is the reason why the structure of the psosiesuld capture as well as possible
the main stylized facts observed in the empirical data. Secthe forecast depends only on
the process parameters, namely there is no additional péeamegardless of the forecast
horizonAT . This strategy ensures a strong consistency across treaitreorizomAT, where
moreover the information at the daily horizon is used at &stbBecause of this consistency,
inferring the forecast from a process at the daily horizéovwed us to reach long risk horizons,
where backtesting of an unconstrained forecast would beditficult or even impossible.

For risk evaluations at the time horizé&T, we are interested in the distribution of the return
r[AT] at this horizon. The return at the time interydl is given simply by the aggregation of
the daily returns

MAT](t+AT) = 5 ATr[fit](t') (9)
t<t/ Tt

Because of the heteroscedasticity of the volatility, a kegrdity is the forecasted volatility at
horizonAT:

G2[AT](t) = E [ rAAT](t+AT) | Q(t)] (10)

where the notation emphasizes that this is a forecast cadmit for the volatility of the
price change in the next time periofAT|(t + AT). Using the process equations and the
aggregation of the daily return, the right hand side can lmeprded explicitely as a function
of the quantities in the information s&X(t). This step is the crux of the method as it relates
the forecasts aT = n &t to &t, using the process properties.

10
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Figure 1: The weighh(n,i) versus the lag for the -GARCH and long memory processes. The curves with
labels “long memory 1 day” and “long memory 1 year” correspptmthe long memory process, for a forecast
horizon of one day and one year repectively.

The equations are simpler when the autoregressiveigi(t) is absent. In this case,
E[r[at)(t) riat](t") | Q)] =0  for t'#t” (11)

and the cross terms cancel after the expansion of the sqliaea, the volatility forecast can
be expressed in the simple form

GIAT](t) = Aa_I PRUDLSCRLY (12)

with AT = n dt. The coefficient\ obeyy;-oA(n,i) = 1 for all n, and can be computed by
recursion equations. This form for the forecast shows thangtsimilarity between the one
step forecast as used in the process definition in eq. 3, @awtstep forecast. The leading
term in eq. 12 is given by ~ /AT /dt, namely by a “square root law” of the risk horizon.
This leading term originates in the diffusive nature of tmegess, namely the (logarithmic)
price process follows a random walk. Then, the coeffickgmt i) brings in the corrections

due to the particular memory structure of the process.

The current RiskMetrics methodology, with an EWMA weiglgtitan be cast in the current
processes framework by taking an I-GARCH process, for which

o 1-p
- :|__l'limaxl'l

A (13)

(the above long memory process is reduced to this form wherwomponenk,.,, = 1 is used).
In this case, as shown at the end of Appendix A, the conditiexgectation for the forecast
becomes

A(n,i) = A(i). (14)

namely there is na dependency. In other words, the volatility forecasts fotiade horizons
are given by the volatility as computed with the single EWN&aled by, /AT /ét.

Figure 1 shows the weights(n,i) for an I-GARCH and a long memory process, in semi-
logarithmic scales. The black and blue dashed lines carrespo the I-GARCH process,
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with no dependency on the forecast horizon. The group ofetlifines corresponds to the
long memory process, where the black line giw€s (i.e. the one day forecast), and the
colored curves corresponding to the forecast horizoasb, 21, 65 and 260 days. We see
clearly that with increasing forecast horizons, the wesgii¢crease on the recent past and
increase on the distant past. This behavior is fairly intejtas a long term forecast should
use more information from the distant past, whereas a skt forecast is dominated by the
recent events.

The detailled empirical study shows that the autoregregsiimy,; must be included in or-
der to construct a process that captures well the propegtidee financial time series. Our
theoretical approach is to considgr as small, and treat it in perturbations. This introduces
corrections for the volatility forecast, as well as a noroZerecast[AT] for the return at the
risk horizonAT. The analytical computations relatedig are detailled in the appendix B.
The key point is that, because the process includes onlgriered quadratic terms, we are able
to evaluate analytically the conditional expectationsdeeketo compute return and volatility
forecasts.

2.3 Theresiduals

With the forecasts for the retufffAT]|(t) and volatilityzrvz[AT](t) computed at, the basic
formula to evaluate market risk is

r[AT](t) =T[AT](t) + Y[AT] EIVZ[AT](t) g(t). (15)

The residuat is a random variable with a given distributipar (¢). The distribution is such
thatE[¢] = 0 andE[e?] = 1. The scale factoy[AT] is a fixed function with a weak dependency
on AT given by eq. 17 below, and essentig§fAT| ~ 1. On the left hand sideAT](t) is a
random variable, dependent enFrom the returns distribution, computed for example with a
Monte Carlo simulation, the risk measures can be estimbakedyaR and expected shortfall.
The risk measures can also be computed analytically (fotioreeseries!), for example with

a normal distribution. In this formula, the forecasted retand volatility act respectively as
location and size factors. Therefore, the probabilityrdbstion of the returnsgonditionalon
randg, is identical to the probability distribution of the resals. We are using the shorthand

. - ~5\1/2
for the volatility forecast = {02} .

The most important part in this formula is the forecast fa wolatility 6. This term should
capture the heteroscedasticity of the financial time seseghat the pdf of the residuals is
stationary. This is expressed by the fact that (€) depends on the risk horizon, but not on
t, and only the volatility forecast will make the risk largarperiods of high volatility. Th&
term emphasizes the tight relation between volatility ¢asts and risk evaluation.

The volatility forecast is itself a time series, with a noivial distribution. Essentially, all
volatility forecasts are based on the (magnitude of the) gdarns, and therefore, they will
share some properties wigr). In particular, the volatility forecast has also a fat tastdbu-
tion (say similar to ther| distribution). Because the above formula is essentratyo € and
all the terms are time series, theconditionaldistribution of the returng(r) is different from
the distribution of the residualsat (€). Intuitively, because the distribution of the volatility
forecasts captures some of the fat tails, the distributiaih® residuals should have less fat
tails than the distribution of the returns. The questionhgther the volatility forecast captures
all the fat tails and the residuals have a Gaussian disioibbubr whether part of the fat tails
for the returns originate in the residual distribution. W# imvestigate this question in sec. 14

12



using empirical data. Let us emphasize again the importfiatehce between the conditional
and unconditional distribution of the returns. The disttibn specified in a risk methodology
is the distribution of the residualsyt (€). It is identical to the conditional distribution of the
returns (up to shift and magnitude factors), but not to theoaditional distribution of the
returns (because af(t)).

The formula 15 is used to evaluate the forthcoming risk dh order to establish and test a
risk methodology, historical data is used and the formusolged fore, leading to

T (1) - TATIC+AT) —TIAT)). 16)

VIAT] \/02(AT](t)

On the right hand side, the returfAT|(t +AT) corresponds to the historical return at the time
t-+AT, or to the realized return &t This formula is similar in structure to the “standardipati

of a time series by removing its sample mean and dividing bysimple standard deviation;
the key difference is that we use the respective forecagsts Bte motivation is to discount
the realized return by the available informatiort &t order to build a random variabthat

is well behaved, namely iid. The pght ([AT]) can be computed empirically, and compared
to different models fopat. Then, using an analytical model fpat, the VaR,[AT] can be
computed, as well as other risk measures.

Notice that the formulas 15 and 16 are very similar to thedasie step return increment
r[ot] used in our process definition. The main difference is thadiéfinitions 15 and 16 are
expressed for the risk horiz&il instead oft.

The probability distributions of the residuals must be stnatE | £2[AT] | =1. On the other
hand, the volatility forecast is computed from the process equations in our approach, and
does not contains any free parameter. In order to be ablespece the conditioe?) = 1
when computed from empirical data according to the form#élaal‘scale factor” depending
onAT has to be introduced. This is the role of the scale funcfjait | given by

YIAT] = 1.06+0.008(In(AT /8t))?. (17)

Its form and parameters has been established on a subsetiaielgeries corresponding to
fairly liquid assets (these time series were shorter tharoties used in both final data sets).
The form was found by plottinge?[AT]) as a function oAT for each time series (and with
y=1), and finding an overall decent approximation. When usetherfinal ICM and G10
data sets, no change were made as the initial formula worsmne|.

To summarize our approach, the goal is to obtain an iid randimmablec at time horizomAT.
For this purpose, we build the needed forecasts using a s at the daily time stej.
These forecasts depend only on the process and have noadtarameters; they are used
to remove the predictable part of the mean and the varianttegirice changes.

2.4 Annualization

Mean returns and volatilities have a scaling dependendy gpect td\T, namelype; ~ AT
ando ~ v/AT. As we want to study risk at different risk horizons, it is teeto remove this
dependency. The common convention is to scale all quastitiex reference time horizon
of one year, a procedure called annualization. The typigaibers that one has in mind are
indeed annualized volatility, and for most (free floatinguld assets it is in the range of 5 to
30% per year. For quantities computed at a s@dlethe corresponding annualized quantities
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are

Ga — / 1year0
AT
fra = Hlyearr. (18)
AT
1 year
Hetta = Met-

AT

The annualized quantities can be directly compared at warioime horizons, as the lead-
ing random walk scaling has been discounted. For exampefotiecast for the annualized

volatility has no leading scaling wit/AT /3t, but only the constant factay/ 22" In the

following empirical sections, because we want to systerallyi compare results at different
time horizons, all the quantities are annualized, buttkabscript has been dropped.

3 Thedata sets

The empirical investigations are done using two data satst, the “ICM” (International Cap-
ital Market) data set is a fairly large ensemble of time secievering major asset classes and
world geographic areas. This set contains a total of 233<tigeeies, divided into commodi-
ties (18), foreign exchange (44), stock indexes (52), st¢tk) from France and Switzerland,
CDS spreads (Credit Default Swap) on US firms (5), interdssrél00) with maturities at 1
day, 1 month, 1 year and 10 years. The length of the time sargesf at least of 1200 days,
most of them between 2000 to 5000 days. The second set, &Gill@dcontains 58 time series
for the G10 countries, and covering commodities, FX, stodekes and interest rates. Details
for these two sets are given in [Zumbach, 2006a].

In the scatter plots, the symbols are as follows: stock indegreen square; FX: blue circle;
CDS: magenta triangle (pointing up); Commaodity: blackrigke pointing right; Stock: black
triangle pointing down; IR: essentially red with differesyyimbols according to the maturities.
For the maturities, the symbols are as follows: 1 day: 'x’; anth: '+’; 1 year: five points
star; 10 years: six points star. For the geographic locatithre colors are as follows: magenta
for USA and canada; pink for Australia and New Zealand; réegtotise.

4 Price mapping

The standard assumption in finance is to modelltgarithm of the pricex = In(p) by a
random walk, possibly with a non trivial structure for theatdity, for example with an ARCH
process. Considering that the logarithm of the price is theot” variable is rooted in the
economic invariance under the multiplication by a positivenber of all the prices. In other
words, for a given currency, if all the prices are multiplieg the same constant, nothing
changes. After the transformatign— x = In(p), the logarithmic price differences do not
depend on an overall price multiplication. The processesl uis finance are build only on
the logarithmic price changes but not on the pricep. As a result, the correlation between
price p and volatility is zero, in agreement with the empirical fdésu Otherwise, should
the volatility be computed from price differences (withéagarithms!), then there would be
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a positive correlation between prices and volatility besealarge prices lead to larger price
changes, and hence to larger volatility.

The situation is different for bonds and interest rates.s€reecurities allow to trade the time
value of money and have boundaries on their possible valtes.example, the value of a
bond must be between zero and its par value, or the intertest maust be positive. Because
there is no theoretical invariance argument, it is muchdésm which transformation leads to
the “good” variable that follows a random walk. In this casae has to relies on empirical
investigations. Our criterion is as described in the presiparagraph, namely to minimize the
correlation between the prices (or the yields) and the Mityatvith the volatility computed
with differences of the transformed variables. Similang want also to minimize the corre-
lation between mapped price (or mapped yield) and volatilihe underlying idea is that the
volatility must depend only on differences, and not on tredd/level (or on the mapped yield
level).

As a candidate for the “good” variable, the bond price itgelhappropriate, because it must
obey two constraints, and because it has a strong dependartye time to maturity. The
interest ratgy, or yield, for a given maturityT is a better candidate, and must ob#ye single
constrainty[8T|(t) > 0. We have investigated empirically a few simple transfdromes for

y, for the interest rates in our test set. The transformatimasone(x =), log (x = In(y)),
sqrt(x = /y) andlinLog (x = In(yo +Y)). The returrr are computed by differences wfand
the volatility is computed by a sum of returns squared ovéma periodAT. Similarly, the
variablex ory is averaged over the same time inter&al. Then, we compute the correlation
p(y,o0) between yields and volatility, and the correlatiop(x, o) between mapped yiekiand
the volatility. Both correlations are computed for eachid/igme series, and the results are
displayed below in the form of a probability densjigp) for the correlation (i.e. the empirical
probability in our test set).

The parametehT has the following influence on the estimation of the correfatthe number

of independent yields decreases @ATL, but the variance of the volatility estimator decreases
as /v/AT. Essentially, with increasingyT, the volatility is estimated more accurately, but the
number of independent yields decreases. Because of tkediffe of the exponents, itis better
to use a smalAT. This has been checked empirically, and the results aremies below for
AT =1 day (the results are similar for larg&T). The correlationp(y, o) or p(x,0) show very
small differences, and the figures 2 and 3 are given for thepethpieldx. For comparison,
the same computation is done for foreign exchanges and stdekes, and shown on fig. 3.
In this case, the base variable is the pnzewith the transformatiomone(x = p), and log

(x=1In(p)).

For the transformationone the interest ratg shows a positive yield-volatility dependency for
largey. Onfig. 2, this appears as essentially positive correlatioed curve). This dependency
can be understood intuitively because large interest hateslarger changes. This explanation
is validated by a more detailled investigation of the reswlthere large correlations are related
to large yields. This shows that the yield is not a “good” &hte. A simple solution consist
in using a logarithmic transformation (). For thislog transformation, there is a (price-
volatility) dependency for small values gf this correlation originates in the boundary= 0
and in the finite tick size that leads to large relative charigesmally values. The “boundary
effect” leads to negative correlations, as shown by the bluge on fig. 2. Therefore, the
logarithm of the yield is also not a “good” variable.

Both explanations point to a transformation that is lineasinally and logarithmic for largg.
A simple transformation with these properties i y), whereyy fixes the cross-over from

3The constrainy[3T](t) > 0 can even be violated by minute amounts, as this occurrettidaiapanese Yen.

15



none
log
031 sqrt
lin-log
0.25
0.2r
5
o
0.15
0.1r
0.05r
‘ \’/\ ‘

0
-80 -60 -40 -20 0 20 40 60 80
mapped price-volatility correlation [%]
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linear to logarithmic. Computations for different valugsshow that a value aroung ~ 4%
leads to a minimal price-volatility dependency. The par&mg is not critical as there is only
a weak dependency of the results with respegiptoThe corresponding probability density
for the correlation is plotted with the black curve, whiclkegsentially symmetric around zero.
A more detailled investigation shows no particular depecgdor large or small yields. This
shows that théinLog transformation leads to a “good” variable.

A transformation with similar properties is the square noet , /y. Statistically, its pdf does
not differ from thelinLog transformation, showing that it is also effective at neignag the
dependency between yield and volatility. Yet, we felt thngre is no intuitive explanation for
why this particular form should be used, whereas the argtsrgimen above for thénlLog
transformation make sense with respect to the market behavi

Notice that the statistics for one time series are not vepddzecause the interest rates have
a slow evolution. Even within a 15 years period, they tendt&y $n a limited range, and
many currencies have had very low interest rates in the &stak. Added difficulties are the
high correlations between different maturities as welhadiimited number of currencies with
free and liquid fixed income market. All these limitationg@ude an accurate determination
of the optimal transformation. For the rest of this work, wee uhelinLog transformation
x=In(yo+Y) for interest rates, witkip = 4%. A value foryg around a few percents is plausible,
and the final risk estimates are very weakly sensitive tovhlises.

The comparison figure for the FX and stock indexes is alsoasting. Thenonetransforma-
tion (i.e. computing the volatility with price differend¢sshows clear positive correlations,
as expected. For the FX, tlhag transformation makes symmetric the pdf for the correlation
Yet, for the stock indexes with thieg transformation, the correlation probability is clearly
skewed on the negative side. This is related to the asymrbetwyeen up and down moves,
where large negative moves (stock index crashes) are fetldwy high volatility periods. This
dependency leads to a negative correlation, as observdeardph.

Finally, the modelization of interest rate processes @teel to the above change of variable.
A simple one factor model for the short rate can be writen as

St
dy= (yo—y)? +0s(y) dw

The first term(yp — y) ot /T introduces a mean reversion at a time horizpthe second term
introduces a random component through a Wiener progdesdDepending on the particular
functional form fors(y), various models can be writen. Standard choices(gje= 1 (Vasicek)
ands(y) = ,/y (Cox, Ingersoll and Ross). A change of variakle x(y) can be chosen so that
the process is written as

dx= m(x)?-l—odw (19)

namely the random term appears as a simple additive compdnérihe drift factom(y) is
more complex. This leads to a differential equatdgr(y) = 1/s(y), which can be solved to
find the appropriate change of variables. For the Cox-IrajleRoss model, the transformation
is given byx = 2, /y. Therefore, the above analysis for the yield-volatilityretation shows
that thesqrt transformation that is implicit in the Cox-Ingersoll-Rga®cess is effective at
decoupling yield and volatility. The analysis also suggésiilding an interest rate model with
s(y) =Yo+Y, leading tax= In(yp +y). This model will be as effective at decoupling yield and
volatility. This line of thought with variable changes segts writing the mean reverting term
for x as a simple form (i.em(x) = xo — X), but with a more complex form for the equivalent
drift m(y) in the equation foy.
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For risk evaluations, say with Monte Carlo simulations \tiedd processes is simulated. In our
framework, the simulations are done using eq. 19,rafd /T should be estimated. The form
for m(x) /1 is set indirectly through the lagged correlations for themes. Yet, the empirical
investigation in sec. 8 (page 29) shows a more complex ®tudhan a simple one factor
model for interest rates. In particulan(x) /1 is trend following, and a mean reversion shows
only for time horizons of the order of one year or above.

5 Probability distribution for thereturns

The key concern for market risk evaluation is the probabidiistribution for large price
changes, namely the tails behaviorgif). Because the mean volatility of the various time
series can be very different, it is better to use r / stdDe\(r) as the variable for such a study,
with

stdDev(r) = % Z r2(t) (20)

and wheren is the number of terms in the sum. Notice that this standatidiz of the returns
uses the full sample information. The tail behavior is comeetly studied by the empiri-
cal cumulative probability density c@df). For negative residuals, the tail corresponds to the
convergence of the cdf toward zero, whereas for positivieluass, the tail is given by the
convergence toward one. In order to have similar figures dtin kails, we plot the cdf versus
—r’ for the negative tail, and 1 cdf versug’ for the positive tail.

The resulting figures for the G10 data set are given in fig. 45od the negative and positive
tails respectively. Clearly, the distribution at one dayell described by a distribution with
fat tails, but badly by a Gaussian. With increasing time zums, we can observe the slow
convergence toward a Gaussian. Concurently, the sizesafdta samples diminish, and it
becomes increasingly difficult to make clear assertionsiethe tail behavior fop(r).

There is a common confusion in this field between the prolldistribution of the returns
and of the residuals. Let us emphasize that our approackkasrbased on the residuals

and the important distribution for the risk methodologyig). It is however interesting to
comparep(r) with p(g), and we will return on this topic in sec. 14.

6 Lagged correlationsfor thevolatilities

The dominant feature of financial time series is the hetedesticity, or volatility cluster-
ing. The clustering is quantified by the lagged correlatibaame measures of volatility, and
this lagged correlation decays slowly. The non zero laggecetation means that there is
information in the past about the future volatility, andttf@ecasts for the volatility can be
computed. It is therefore important to understand and gfyantdetails the available infor-
mation in order to build good forecasis Indeed, volatility clustering and the related forecast
is at the core of our approach of risk measurement. Witholattity clustering, no volatility
forecast is possible, and the only possible approach tamakagement would be through an
unconditional return probability distribution.

In order to select the appropriate process that capturesatety the properties of the financial
data, the empirical volatility memory needs to be charatdrin more details. This is done
typically by studying the lagged correlation of the abselualue of the daily returir[dt]
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Figure 6: Lagged correlation for the 10 days realized Mitigtiand averaged over the G10 countries. The
parameters for the theoretical curves are as follows: lagytepg = 82%, 10 = 4 years; power lawpg = 110%,
v = 0.3; exponentialpg = 90%, 1o = 65 days.

however such a study can be done with any measure of voladitit/or more robust measures
of dependency. The difficult task is to pinpoint the behavarlarge lags, as the size of

the independent sample is shrinking. In order to find the mosvincing answer, we have

combined two improvements over the plain lagged correfaticthe daily absolute return.

The first improvement is to select a better volatility estiona There is a trade-off between
the variance of the volatility estimator, the size of thel@pendent) volatility sample used to
compute the correlation, and the range for the lags. Thealesalue of the daily returns, or
one day volatility, is a very poor volatility estimator, detids to the largest data sample and
range for the lags. The realized volatility for a few days eetter volatility estimator, but the
independent sample and the lag range are smaller. In thlis-t#, we found that the optimal
is between 5 days to 1 month realized volatility, and the ggurelow are presented for the 10
days realized volatility.

The second improvement is to pool together different tinmmese The error for the computed
correlation for one time series of 15 years can be estimaddli@ws. The memory for the
volatility has a slow decay, but an equivalent exponengaby could be around 3 months (see
fig. 6). The number of independent data points can be estihiigtd = 180 months/3 months
= 60 points. The error on the correlation is of the order p{/N ~ 8%. At a lag of one
year, the lagged correlations are between 5 to 30%. Clahdyerror due to the sample size
is large, and preclude to have a clear view for the memoryydddaing a robust correlation
estimator helps in reducing the prefactor for the staasgcror. The only other way to reduce
the statistical error is to average the lagged correlatomes a set of time series (assuming a
similar decay). For this purpose, we have computed simpensyevith equal weights, of the
lagged correlations for the different asset classes (FXstiétk indexes, ...).

On fig. 6, we plot the lagged correlation for the 10 days realizolatility, aggregated by asset
classes, for the G10 countries. Fig. 7 is the same graphybtaged over all the time series in
the ICM data set. For this second graph, because of the eqigiting scheme, and because
of the respective number of time series in the G10 and ICM sktts, the largest contributions
originate in the non G10 countries. Similar results are iabthwith other robust volatility
estimators and other correlation estimators. A good sirdegeription of the data is given by
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a log decay

In(t/ét)
oc = Po (1— —— /&)) (21)

with 1o of the order of 3 to 6 years amh depending on the time series. This analytic form
seems to be valid up to 1 to 2 years, possibly with a fasterydfrdarger lags. The usual
analytical description for the lagged correlations is daith a power law

oc = Po (ﬁ) . (22)

T

We find that this second form gives consistently an inferesatiption of the empirical data,
for all the volatility estimators and correlation estim@&toA strong indication for the valid-
ity of the log decay is that the aggregation for differentedsdasses (i.e. with completely
unrelated time series) shows consistently that a log decayperior to a power law. The
aggregated curve for the stock indexes is likely the best aneach index is already an ag-
gregation over many stocks, and the individual indexesairky findependent in the G10 set.
On the contrary, there are more redundant time series irRlamdél FX sets (all the European
countries have similar behaviors). The results for mosviddal time series are also consis-
tent with a log decay, and inconsistent with a power law deabpeit the noise is larger. For
example, on fig. 8 is displayed the lagged correlations feistbck indexes for the G10 coun-
tries. To summarize, we consistently find that the best desmn of the volatility memory
is given by a logarithmic decay, for time tags between a feysda one year. Moreover, the
decay rangdag has a very similar valugg ~ 5 years for all time series. This suggest that a
similar mechanism creates this long memory, and that on@ydiactor can be used to model
all time series.

Notice that this analytical description of the data goesragahe usual claim that the lagged
correlations for the volatility decays as a power law. #br(1/dt) < 1, both analytical de-
scriptions are related by

at\"
0o (?) ~ po (1-vIn(1/&)). (23)
The relationship between the parametensis1/In(1o/dt), and withtg = 4 years we obtain
v ~ 0.14. This explains the consistent small values for the exponeeported from power
law estimates of empirical data. Yet, beware that on thelgrépo 9, the above approximation
is valid up to~32 days. A better fit with a power law decay is obtained witlgéarexponents
(e.g. for the graphs = 0.3), but the best value for the exponent is dependent of tleetsel
domain for the lags. For comparison purposes, we have atéteglon fig. 6 an exponential
decaypoexp(—1/To) (corresponding for example to the -GARCH(1) and GARCH) pib-
cesses). The exponential decay is easily excluded as a gsodtion of the empirical time
series.

The usual (Pearson) correlation is fragile with respectatgd events, and therefore not the
most appropriate for variables with fat tails distribusoWe have investigated two other ro-
bust measures of dependency, namely the Kendall'pfaundpssp The definitions for the
correlation estimators are given in Appendix C. The robustetation based on the stan-
dardized sums and differencpgspproves to give a less noisy answers than the usual linear
correlation, and still with a decent computational timeeWendall’'s Tayp; gives very sim-

ilar values compared tpssp but with a much longer computational time (it scale<O4a?)
instead ofO(n)). Using these robust estimators lead to the same conckia®with the usual
correlation, namely a logarithmic decay is always a betescdption of the decay of the
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Figure 9: Lagged correlation, evaluated with thg;p estimator, for the 10 days realized volatility, for a Long
Memory - Affine - Microscopic - ARCH process. The simulatiemgjth is of 1000 years. The parameters for the
theoretical curves are as follows: log decpy = 57%,1¢ = 6 years; power lawpy = 80%,v = 0.45;.

lagged correlation. The major difference is that the emgircurves are less noisy, and the
parameter values for the analytic description are sligtifferent.

This finding has strong implications on the choice of the tiitya process. The memory
kernel, as specified by the weightg, should be chosen so as to reproduce the empirical
memory. The lagged correlation for the LM-ARCH process cditie computed analytically,
but can be estimated by Monte Carlo simulations (using tfieea$ersion of the process, see
[Zumbach, 2004]). For the simulation, the parameters fergtocess are choosen according
to the values found in the next section 7. Fig. 9 displays #ygéd correlation for the 10
days volatility, for the long memory process using dailyuras. The agreement is clearly
very good, showing that this process capture the correlsdydecay of the volatility lagged
correlations.

Beyond the precise analytical description of the genercagdor the volatility lagged corre-
lation, the difference between a power law and logarithneéicay is quantitatively small on
the accessible range of lags. Using backtesting for the dwg imemory specifications shows
indeed very small differences. For the consistency of théhatmlogy with the empirical
stylized fact, we decide to use a logaritmic decay for thegss.

7 Volatility forecast

The volatility forecast is the single most important partinsk methodology. With the pro-
cess set-up, the forecast depends only on the process piaraméhese parameters are the
logarithmic decay factorg, the lower cut-offtq, and the upper cut-off;. = Ty, .. A-priori
values for them could be as follows. The logarithmic decaydiatg has a value estimated
from the empirical lagged correlation pf or of the volatility; the estimates are in the range
3 to 6 years. The lower cut-off; should be of the order of one to a few days: there are more
information in the most recent past, but a small lower céipats strong weights on the few
last returns resulting in a noisy estimator. The upper ¢utg, should be in the range of a
few months to a few years. The origin of the heteroscedagsiscthe memory of the traders
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and the strategies they follow; the longest time horizonni@rket participants are probably
of a few months to one year (likely pension funds and centiakb). A direct estimate using
empirical data proves difficult because of the increasingentor very large lags, yet most
lagged correlations for the volatility seems to decay fasten a logarithmic decay above one
year. These three values give a first plausible estimatehtoparameters. Notice also the
advantage of our choice for the parameters, as we can havdyairituitive perception of

their meaning and respective values. We denote the threendional vector of parameters by

6= (TO7T17Tmax)-
The process allows us to compute a volatility forecast azbarAT that should be compared
with the realized volatility. The realized volatility (ouqdratic variation) is defined by

op Sy ) (24)

real

t4+0t <t’<t+AT

The annualized volatility is obtained by multiplying by 1layAT. The sum containAT /&t
terms, leading to a noisy estimator of the realized votgtibr short risk horizons. This poor
realized volatility estimator for short risk horizon imedi that the measures of quality for the
forecast (defined below) becomes worst for short horizons.

Straight forward measures of the forecast accuracyLam@ndL, distances. In our context,
we want to compare forecasts for time series with very dffiéwolatility, and it is therefore
more appropriate to use relative measures of the forecastany. To define the relative accu-
racy, we use the sample mean volatility as the referencedste This leads to the following
measures of distance

_ <|6 — cyreal|>
I—17rel = —<| <0> _ 0rea||> (25)
~ 2
I—%rel = <(0— 0rea|) > (26)

where (-) denotes the sample average. With these normalizationsifecpéorecast has a
distance of zero to the realized value, and a forecast asaptite sample mean has a distance
of 1.

The volatility forecast accuracies have been investigateétde parameters space in order to
find a good valueé* for the parameters. The goal is to find one set of parametatscén
produce good forecasts for all assets and time horizons.r@hdts are summarized in the
graphs 10, 11 and 12, showing one dimensional cuts alongateeneter axis through the
point 6. Good overall optimal parameter valug@s are g = 1560= 6 years,1; = 4 days
andTt,. = 512 days. Fig. 10 shows the dependency on the logarithmizydactor. The
horizontal axis gives the values for the logarithmic de@tdrtg, while the other parameters
are at thed* values. The vertical axis is the ratio

|—2,re|(e>/|—2,rel(e*>- (27)

This quantity measures the forecast accuracy comparecetéothcast using the reference
parameter®*. The curves correspond to the different forecast horizZbhs values below
1 indicate that the forecast can be improved by changing #nanpeter value compared to
0*. The set of curves shows that less that 0.5% of the perforenfmmecast can be gained by
optimizing the logarithmic decay factor as a function of thieecast horizon. This small gain
shows that the same parameter valuerfotan be used for all time horizons.
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Figure 10: The relative volatility forecast performancedsnction of the logarithmic decay factor, for various
forecast horizons. The curves are normalized to the rederpainto*.
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Figure 11: The relative volatility forecast performanceaafsinction of the lower cut-off, for various forecast
horizons. The curves are normalized to the reference point
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Figure 12: The relative volatility forecast performanceaafsinction of the upper cut-off, for various forecast
horizons. The curves are normalized to the reference point

The same analysis is performed with respect to the lower aperucut-offs, as shown on
fig. 11 and 12. The forecast performance has a similar seisivith respect to these two
parameters, and fine tuning these parameters leads to iempemt of less than 0.5%.

As a comparison, the same computation is done for the RM138#adology. In this case,
the parameter space for the -GARCH process is one dimegisaod corresponds to the char-
acteristic time of the exponential. Fig. 13 displays the saet of curves as for the RM2006
methodology. Notice that the vertical scale is expandedfagt@r 40 compared to the graphs
for RM2006. The reference poilt is taken at 16 days, and corresponds to the usual value
pn=0.94. This value is nearly optimal for forecast horizons upQalays. For longer horizons,

it is better to use larger characteristic times, and thenogdtvalue increases with the forecast
horizon. Clearly, for longer horizons, the performancengatitained by taking the optimal
parameter value can be quite large.

The figures 10 to 13 show the volatility performance relativehe reference points. The
volatility performance., 1 (6*) at the reference poifit, as a function of the forecast horizon,
is showed on fig. 14. Between two days and three months, thgveeperformance of the
volatility forecast is better than the in-sample mean. Airgdr horizons, the forecast accuracy
decreases due to the poor estimator for the realized vtjatfor example, at one day, the
realized volatility is computed with only one return, leaglito a very large variance for the
realized volatility estimator. This is probably the origihthe apparent lower performance at
short time horizons. Yet, going beyond this simple argunvemild require to measure the
realized volatility using high frequency data. Notice aikat the forecast given by the long
memory process is consistently better than the I-GARCHgs®Cc

All the graphs are for thé, e measure of forecasting performance. Very similar resuéis a
obtained for thet 1 ¢f measure, possibly with a slightly different optimal pofrit As for the
precise measure of the forecast quality, this analysisripen the set of time series. Clearly,
going beyond the broad picture would be overfitting the datade. The important point is
that one set of parameters is able to deliver a good forecastlftime horizons and all time
series, and that the values for the parameters make irdsignse.
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Figure 13: For the RM1994 methodology, the relative vdtsitfbrecast performance as a function of the EWMA
characteristic time, for different forecast horizons. Theves are normalized to the reference poiat16 days.
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Figure 14: The volatility forecast performance as functibthe forecast horizoAT (smaller values are better).
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Figure 15: The short term interest rates for USD (red curveiohth government debt benchmark) and Euro
(blue curve; 1 month swap).

8 Lagged correlationsfor thereturns

For a liquid and free floating asset, the lagged correlatadribe returns have to be zero (up
to statistical noises). If this is not the case, the corn@ftat can be used to set a profitable
trading strategy, until the correlations disappear. Timgge and powerfull argument is used
to neglect the return forecast in eq.15 or in the processtienua.

They are however two points of concern with setting O from the start. First, stocks and
stock indexes should earn in average the risk free rate wfirgplus possibly a risk premium.
This indicates that for these time series, we should inclulteng term positive mean return,
or a long term lagged correlation. Second, short term istestes are set by central banks,
namely they are not free floating. Their decisions are ofteitepredictable within a time
horizon of the order of one month. For example, the short tetemest rates for USD and Euro
are given on fig. 15: there are clear trends that can extenddoe than a year. Clearly, these
time series are not pure random walks, and the distinctereds correspond to correlations
between lagged returns. Therefore, the trading argumeengn the previous paragraph
should be somewhat tonned down: the lagged correlatiorthéareturns must be small.

We apply the same technique that is used for the volatilittheoreturns, namely study the

return lagged correlation in order to search for informaiiothe past data, construct various
forecasts built on this information, and consider the intpéthese forecasts on the risk evalu-
ation. The key difference is that the available informatmbe extracted from the data is much
smaller, and therefore this study is much more difficult. Takea simple analogy, a Gaussian
random walk would be the zero-th order model for the pricelirsgithe heteroscedasticity is

the first order correction, while the correlation for theures is the second order correction.
As we will show in sec. 15.1, the larger contribution indutgdhe lagged correlation of the

returns is through the correction to the volatility foreicéss derived in eq. 58). The return

forecast has a much smaller impact, mainly on the laggeeledion for the residuals.

In order to enhance the signal for the lagged correlatioheféturns, the figures reported here
are for an equally weighted mean of the (robust) lagged ladioa of various time series in the
G10 data set. Fig. 16 is for the one day returns: the laggeélaetions are at the noise level.
The only noticeably feature concern interest rates, wheeotrrelations are mostly positive
for lags larger than a few days. Fig. 17 is for the monthly metu the lagged correlations
seem at the noise level for foreign exchanges and interest. r&et, the lagged correlations
are fairly large for interest rates, at a distance of 3 to 5om zero. For the usual linear
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Figure 16: The robust lagged correlatignsp in %, of the daily returns in the G10 data set, averaged fohn ea
asset classes. The error bars give the empirical standeaiatide for the mean.
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Figure 17: The robust lagged correlatigngsp in %, of the monthly returns in the G10 data set, averaged for
each asset classes. The error bars give the empirical stedefdation for the mean. The x-axis is the relative
lag T, = /AT (with T the lag andAT the return horizon). For, < 1, the returns overlap; at = 1 is the first
point without overlap for the variable.
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Figure 18: The lagged correlatiopgr, at lagAT, in %, of the returng[AT], in the G10 data set. The colors are
blue for FX, green for stock indexes, and red for IR.

correlation, the figures are similar, with the lagged catiehs of the monthly returns for the
interest rates of the order of 12%. This is getting large!

The analytical computations of the corrections due to themdagged correlations in the pro-
cess are detailled in appendix B, and the mechanism behase tlarger correlations can be
understood from eq. 60. Beyond the analytical formula, theition is that the correlations
originate likely in the central bank decisions for the sherin rates. Essentially, small but
positive one day correlations add up, creating larger tatioms for longer time intervals. The
best summary of the effect is visualized by the “lag one” elations, namely the correlation
betweerr [AT|(t) andr[AT](t +AT), as a function oAT. On fig. 18, the different behavior
of the IR is clearly visible, in particular the correlatioase essentiallpositivefor lagsAT
between 10 days and 3 months. This goes against a simple eneasion term that leads to
negative lagged correlations. Another interesting oletem is the sharply decreasing cor-
relations for the longest time intervals. This should be ttuthe long term mean reversion
of the interest rates, and the figure is roughly consistettt @imean reversion time of the
order of one to a few years. Overall, this figure shows the dexity of the lagged correla-
tion of the returns for interest rates, and that differentinamisms take place at different time
horizons. Most of the existing data generating processelRfose a simple mean reversion
term, and therefore are not able to capture the observedsoaléis behaviors. The conclusion
of this analysis is that the lagged correlations of the returannot be neglected, but more
fundamental work would be needed to gain a deeper understpadd to build finer models.
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Figure 19: The density histogram for the correlatipnand pssp between the forecasted and realized returns.
The time series are the ICM data set.

9 Return forecast

To define relative distances for the return forecast, we us@forecast as benchmark. This
choice leads to the definitions

F_rrea
I-1,re| = u (28)

<|rread>
2 <(F_ rreal>2>

I-2,re| = <r2 >

real

(29)

As already discussed for the definition of the residuals,réadized return at time is the
historical return at timeé + AT. With these choiced, i = 0 means a perfect forecast and
L = 1is a forecast as good as="0.

Thely e is related to the linear correlation (up to facteis and(r.,) that are neglected): by
expanding the square and denotinggby: (?)/(r2_), the optimal value fop is p = p. For
this optimal value, we have the relatibﬁre, = 1—p?; for example a 20% correlation implies
Lo rel = 0.98, namely a small departure from 1.

Other measures of quality are the correlations betweemrdsted and realized returns, com-
puted either with a simple linear correlatipror the robust correlations; or pssp We tried
many possibilities for the forecast, but none proved clesuperior to the others. Often, some
measures of quality can be improved but at the expense of oteasures of quality. Af-
ter testing many variations on the return forecasting fdanmcluding the analysis per asset
types (IR, FX, Index, etc...), we set on the one given at tlteadrappendix B.

Fig. 19 gives the correlations between forecasted andzeghieturns. The asymmetry on the
positive side indicates that we are clearly capturing sorfa@ination in the forecast. Yet, the
relative distances plotted on fig. 20 show that in the majarftthe cases, we do worst than a
nil forecastr'= 0.
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Figure 21: The lagged correlation for the daily absolutanreg|r [6t]|, for the G10 data set.
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Figure 22: The lagged correlation for the daily absolutédiesis|[dt]|, for the G10 data set.
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Figure 23: The “lag one” correlation for the absolute reald{e[AT]| (vertical axis) versus the “lag one” corre-
lation for the absolute returngAT]| (horizontal axis). One point corresponds to one time sémigse ICM data
set. Each panel corresponds to one risk horxdn

10 Lagged correlationsfor absolute residuals |g|

In empirical financial time series, the largest deviatiowsT a simple random walk is due to
the heteroskedasticity. This motivates the present apprtmrisk, and in particular the key
definitions 15 and 16 used to discount the expected volaitlithe forthcoming risk horizon
period. The effectiveness of the approach can be observectlgiby comparing fig. 21 and
22. They show respectively the lagged correlations for thiéy cibsolute returns and daily
absolute residuals, for all the time series in the G10 datasefig. 21, the slow decay of the
volatility memory is very clear, as well as the differenceanrelation levels between different
asset classes like equity indexes (green) or interest fiaeds The same computation but for
the residuals shows essentially no remaining lagged etiwak, as is visible on fig. 22. At
closer inspection, one may notice two features. First, femainterest rates, there is a monthly
seasonality due to central bank decisions. This is visiblg for short maturity rates (daily
(x) and monthly (+)), at lags around 22, 44 and 65 business.d&gcond, at a lag of one day,
there are small remaining correlations, particularly faerest rates.
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Figure 24: The “lag one” correlation for the residug]AT] (vertical axis) versus the “lag one” correlation for
the returng [AT] (horizontal axis). One point corresponds to one time seni¢se ICM data set. Each panel
corresponds to one risk horizeT .

This last observation prompted us to study in more detadsldy one” correlations, namely
the lagged correlations of the returns and residuals athiiskzon AT, at a lag of one risk
horizon orAT days. Figure 23 shows the “lag one” correlations for the hbsaesiduals
versus the “lag one” correlations for the absolute retufngerfect risk methodology (applied
on a infinitely long data set) should show points only alorghibrizontal axis, correspond-
ing to non zero correlations for the returns but zero cotieia for the residuals. A good
risk methodology would show points in the east and west sgctorresponding to smaller
correlations for the residuals than for the returns. Therégshow that up to a month, the
heteroskedasticity is well discounted by the risk framdw@ibove one month, the efficiency
of the volatility discounting decreases, but the statdtimise increases, so that it is difficult
to draw strong conclusions.
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11 Lagged correlationsfor theresidualse

The lagged correlations for the returns has been investigat sec. 8, with the important

outcome that correlations at intermediate time horizomsiotbe neglected (see fig. 18). The
way to introduce return correlations in our process framevigstraightforward, as detailled

in appendix. B. Fig. 24 shows the “lag one” correlations fa tesiduals versus the “lag one”
correlations for the returns. The improvements at riskzors up to one week are very clear,
but disappear quickly with longer risk horizons. The mostigative lagged correlations&st

= 1 year for interest rate (i.e. the long term mean reversgalso very clear. Despite the poor
performance of the return forecasts, the backtesting oRt¥i2006 methodology shows that
it increases the performance measured by the relative éanee fractiod(z) (see sec. 15).

12 Variancefor theresiduals

As discussed in sec. 2.3, the probability distribution @& thsiduals is such th&[e?] = 1.
This condition fixes the scale of the distribution, and itdrees(¢?) = 1 on empirical data. It

is very important for a risk methodology to follow this scakndition. Systematic deviations
from the equality correspond to systematic over or undémesion of the risks. Indeed, these
deviations are the factors that limit most the accuracy ol methodology. Fore?) >

1, the relative exceedance fractidfr) used in back testing (see [Zumbach, 2006a]) shows
systematic deviations from zero with a shape corresportdiagoo large variance. Intuitively,
atoo large forecasted variance leads to a too large foextask, and the scalar error measures
like dp grow. Therefore, it is important to correct the systematatdrs affecting the variance.

Beyond the long memory for the volatility and the Studentrihstion for the residuals, the
RM2006 methodology includes two terms directly relevamtthe scale condition. The first
one corrects for the non zero lagged correlations for themstand is given by eq. 59. The
second term is thg/AT] term included in the definition of the residuals and givendn 7.
Because the volatility forecast is completely specifiedH®y process, this term is a free ad-
justable function used to enforce the scale condition ofélseduals.

A methodology including only a long memory process and Studestribution for the resid-
uals is used for computing fig. 25 (i.e. none of the correstiabhove are included). With
increasing risk horizonAT, the foreign exchanges (blue) are doing well, the stockxese
(green) show a systematic upward trend, but the interest (atd) are quite scattered. More-
over, the quantitative deviations from 1 are quite largadieg to substantial misestimates of
the risks.

The bulk of the deviations are due to correlations betweemeturns. Positive lagged correla-
tions between the returns lead to larger volatilities agkrtime horizons, as is clearly visible
for many interest rates. The correction 59 derived from tlee@ss equations in appendix B
leads to a better situation, as shown in fig. 26. Yet, theresgstematic upward trend with
increasing risk horizons, as is clearly visible by the deerafrom the horizontal black line.
The role of the scale factor correctigiAT] consist in absorbing this systematic deviation. A
fit was done on the mean of the standard deviations, but on Hesraad shorter subset of
the G10 data. This leads to formula 17, which proves to work eeugh on the larger data
sets. The correction can be seen at work on fig. 27 for the ICisl kg, where no systematic
deviation on the vertical axis can be observed.

The final results with both corrections included are showifign28 for the ICM data set.
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Figure 25: The standard deviations of the residadld | versusAT, for the G10 data set, without corrections
for the lagged correlation (eq. 59 on the volatility) andheitit scale factoy]AT]. The horizontal black line is a
guide for the eyes sets at 1.

Figure 26: The standard deviations of the resida@d] versusAT, for the G10 data set, without scale factor
YIAT].

Figure 27: The standard deviations of the residefld | versusAT, for the G10 data set. Both corrections are
included.
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Figure 28: The standard deviation for the residwedsT| (vertical axis) versus the standard deviation for the
returnsr[AT] (horizontal axis), in log-log scales. One point correspotdone time series in the ICM data set.
Each panel corresponds to one risk horizdn
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Figure 29: The mean for the residualdT] (vertical axis) versus the mean for the returfsT] (horizontal
axis). One point corresponds to one time series in the ICM slett. Each panel corresponds to one risk horizon
AT, with the graph limits scaled by/AT.

The standard deviations for the returns are reported ondtiedmtal axis, while the standard
deviations of the residuals are given on the vertical axie difference of volatility between
the broad asset classes is clearly visible, for exampleé stolexes (green) are more volatile
that interest rates (red). The standard deviations fordbieluals are clearly clustered around
1, with obviously larger deviations for larger risk horizahT. The clear outliers correspond
to the foreign exchanges (blue circle) for Turkey, Brazihzdkhstan, Hong Kong Dollard and
Philippines. All these currencies were at some point stsoregulated by central banks, and
have experienced sudden and disruptive events. Cleagyramom walk model performs
badly on such time series.

13 Mean for theresiduals

The same computations but for the mean are reported on fign #9s case, we want to check
that (¢) = 0. Most interest rates went down during the last decadeltigin negative mean
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values for the corresponding returns. On the other handkstand stock indexes raise in
the analysis period, resulting in mostly positive mean @alfor the returns. This systematic
difference leads to the separation along the horizontalcton. There is no separation in
the vertical direction except at the longest risk horizastsowing the effectiveness of the
methodology in removing the means for the residuals. Witlsourections for the short term
correlations and the long term mean returns, the meansteshefall on a straight line, with
the same segregation between asset classes for the mearretuims and the residuals.

14 Probability distribution for theresiduals

A key ingredient in a risk methodology is the probability diyn pat(€) for the residuals,
and in particular, the tail behavior corresponding to laagents. This is conveniently studied
by the empirical cumulative probability density ¢elf. For negative residuals, the tail corre-
sponds to the convergence of the cdf toward zero, wheregsofitive residuals, the tail is
given by the convergence toward one. In order to have sirfigares for both tails, we use
the same mapping as in sec. 5.

The resulting figures for the G10 data set are given in fig. 30 3hfor the negative and
positive tails respectively. The salient feature of thesaplys is the very good data colapse
that the RM2006 methodology gives. This shows that one #@inalyorm for the residual pdf
should be enough to characterize all assets. The singleurgd that departs from the others
corresponds to the Euro swap rate at one day. A close exaonratthe raw time series
shows frequent changes in the 0.5% to 1% range, probablyodummpeting data source and
a less liquid market. These frequent large changes induaekaof small changes, visible for
smalle on the graphs.

At a one day risk horizon, the Gaussian distribution can lsédyeexcluded as it clearly misses
the fat tails of the empirical data. On the other hand, a Studistribution with 5 degrees of
freedom provides for a good global description of the cdf|uding the tails. Changing the
number of degrees of freedownfor the Student distribution shows that 3 gives clearly too
much tails whereag = 8 gives not enough tails. These rough bounds for the tail msmpioare
confirmed in the section 15.3 on backtesting.

With longer risk horizons, the amounts of data in the taimaidish, and it becomes increas-
ingly difficult to make a clear distinction between diffeteamalytical descriptions. At 3
months and above, it is not possible to differentiate betwtbe Student wittv =5 and a
Gaussian. Up to one month, the Student with a fixed number grieds of freedonv = 5
seems to provide for a good description of the residual pdfe @ossibility to improve the
description of the empirical pdf is to include a weak depewgtewith respect ta\T in v.
Notice that we cannot use an analytical hint fgAT), as there is no simple aggregation
property for the residuals. Instead, we use a Monte carlalsition for a ARCH process,
sampled daily, and with a simulation length of 1460 yearse Plocess is a market com-
ponent model [Zumbach and Lynch, 2001, Lynch and ZumbadgR0vith intra-day, daily,
weekly and montly time horizons. This process is probabéyttbst available model today in
term of replicating the observed statistical propertiethef empirical data. The parameters
are estimated on USD/CHF, but parameters for other cureaicy are similar. The process is
simulated with a time increment of 3 minutes, and the prioe#ife residual computations are
taken daily. The resulting residual distributions are shaw fig. 32, together with the empir-
ical cdf for the six foreign exchange rates in the G10 data Aet risk horizon of one day,
the tail for the process is well described by a Student thstion withv = 7, and this agree
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with the empirical distribution for the FX rates (althoudjieir dispersion is fairly large). This
tail estimate is slightly thinner than tive= 5 estimate made on the ICM data set, likely due to
the large liquidity and absence of regulations for the meprates. At longer risk horizons,
the graphs include two Student distributions wite= 7 andv = 7+ In(AT) (and a Gaussian
plotted with a dashed line). Even with such a long and cleant®l€arlo data set, it is not
clear what is the best description of the residual pdf foglaek horizons. With the length of
the empirical time series we use, there is no advantage iimgate more parameter in the
empirical description of the residual pdf. As there is nacleenefit in using a more complex
description with respect tAT, we decide to keep a fixed number of degrees of freedend,
independent oAT.

The first direct comparison between figures 30 and 31 show$wviows asymmetry between
the tails. At closer inspection, small but clear differencan be observed for stock indexes.
The pdf asymmetry is measured by

(1—cdf(g)) —cdf(—¢). (30)

This quantity is plotted for the stock indexes in the G10 daghin fig. 33. The systematic
deviations from zero show that stock indexes experiencpiéet small increases (gains) and
infrequent large decreases (losses). The difference ketiaege and small is given essentially
by the current forecast for the volatility, namely by~ 1. This same behavior is observed
for individual stocks, but no systematic asymmetry is obserfor the other asset classes.
Although clear, the asymmetry is quantitatively small: éo¢ +1, the cdf is of the order of
0.2 and the asymmetry of the order of 0.01 to 0.02.

Because the asymmetries are small and observed only fdesséoa stock indexes, we de-
cide to neglect them in the analytical description of thedwal distribution. This deci-
sion simplifies considerably the parameters evaluatiorhefresiduals pdf. In principle,
univariate and multivariate generalized hyperbolic distiions can be constructed (see e.g.
[McNeil et al., 2005] and references therein). This famidgyn@ccommodate asymmetric dis-
tributions, however with the drawback that the number ohpaaters are at least proportional
to the number of assets (depending on the simplifying assang). More work is needed to
find an overal description depending only on the asset dagsth one asymmetry parameter
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for stocks and stock indexes and symmetric distributiohgmtise. We leave this topic for
further research, as it involves a multivariate analysithefresidual pdf.

The comparison betwegn(r / stdDe\(r)) (fig. 4 and 5) andp(¢) (fig. 30 and 31) shows no
important difference. The tails of the residuals are slhigtitinner at one day, but seem more
persistent for increasinyT. This shows that the volatility forecast (used to deriverdsiduals
from the returns) captures part of the large events. Theeatollapse is also slightly better for
the residuals, mainly in the core of distribution. Yet, a kigstinction between the figures is
that the returns are standardized using the full samplelatdrdeviation, whereas the residuals
g(t) are computed only using information upttoThis key difference makes the residuals fit
to use in a day-to-day procedure, whereas the normalizafitime return using the standard
deviation of a sample up towould give worse results.

15 Backtesting

The analysis so far concerns the various pieces that erttethe new methodology. The
strategy was to isolate as much as possible the various amenp®) and to test and justify
them. Yet, the final methodology contains all the parts thegract non linearly, essentially
due to the definition 16 of the residual. Moreover, the rest fer a risk methodology is
how it performs with respect to risk evaluations! The goatto$ section is to analyse the
performance of the methodology, to understand where theowements originate from, and
to compare with one well established methodology.

The backtesting framework follows [Zumbach, 2006a] andasda on the probtiles corre-
sponding to the residuals. The main analysis tool is theivelaxceedance fractiod(z)
that shows the difference between the actual and expectet@ances fraction, for a given
probtile. Then, convenient norms are set on this functiath thhe property that lower values
correspond to better performances, and with an emphasizkeotails that can be chosen.
We use thedy and d3» norms as measures of performance, wighmeasuring the overall
exceedance difference amgd, capturing the exceedance differences in the far tails. -Simi
larly, the lagged correlations are computed from the pledti The reader should consult
[Zumbach, 2006a] for the details of the backtesting fram&was well as for a systematic
comparison between various risk methodologies.

In order to give a scale for the performance measures, wadedwo benchmark method-
ologies in the figures below. One benchmark is the straigidaod RiskMetrics exponential
moving average methodology, with a decay facdtor 0.97. The corresponding curves are
labelled “RM1994097” on the graphs. Another benchmark is the “long memoryue&tt”
which includes a volatility forecast derived from a procesth long memory as in appendix
A, and a Student distribution for the residuals. No othettigbution is included, leading to a
simple extension of the RM1994 methodology. This benchrsaldbeled “LMPIlusStudent”.
The other methodologies correspond to the full RM2006 nubthagy, but with one of its
components removed. This allows us to measure the impaetobf @ntribution in the final
risk estimates. The three subsections below present thacinop the RM2006 methodology
of the different terms for the return forecasts, for the tibtg forecasts, and for the residual
pdf. A fourth subsection compares the overall impact of tla@nmgredients used in the final
methodology.
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Figure 34: The aggregated error measlyécomputed with a geometric mean), between one day and omg yea
for the ICM data set, and for various return forecasts.
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Figure 36: The aggregated lagged correlation of the pesbfdomputed with an arithmetic mean), between one
day and one year, for the ICM data set, and for various retwnechsts.
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Figure 37: The aggregated error measige(computed with a geometric mean), between one day and ome yea
for the ICM data set, and with various volatility forecasts.

15.1 Backtesting thereturn forecasts

The influence of the return forecasts can be assessed on fi§53hd 36. Fig. 34 shows
the impact of the return forecasts on the overall exceedfitacgon. Clearly, the long term
drift is a key component (as removing it decreases subathnthe performances). Fig. 35
shows an error measure focused on the far tails for the sarttedwdogies. In this case, the
story is quite different, as the return forecasts does notritiute at all to the performances.
This can be easily understood, as large events are much thagethe forecasted returns. As
other performance measurdsare selected, the impact of the mean drift decreases gtadual
asp increases. Therefore, including the drift ensures optpealormances at all risk levels.
Another measure of performance is given by the lagged @iroel of the probtiles, measuring
the tendency of events to cluster. Fig. 36 shows that the @efyibution is given by the return
forecast originating in the lagged correlations of the metu

The final picture about the return forecasts is that they awgrthe methodology, but the
different components (lagged correlation or long termtfrifatter for different measures of
performances. In order to have optimal performances wipeet to all criteria, both terms
for the return forecasts should be included.

15.2 Backtesting the volatility forecasts

The volatility forecast is a very important part of a risk imatiology as it should discount
efficiently the heteroskedasticity. The figure 37 analyhescontributions of the terms that in-
fluence the volatility forecasts. For the exceedance diffees in the tails, as measuredday,
the key contribution is the scale factgAT]. It shows that it is very important quantitatively
to follow the size conditiorE [ €2 | = 1.

15.3 Backtesting the residuals pdf

The influence of the probability distributign(e) of the residuals can be seen on fig. 38. The
RM2006 methodology, but with a Gaussian distribution, lielad “RM2006nulnfty” (dashed
black line). Clearly, a Student distribution improves tleefprmances, but the sensitivity with
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Figure 38: The aggregated error measige(computed with a geometric mean), between one day and ome yea
for the ICM data set, and for various residual distributions

respect to the number of degrees of freedors very weak in the region.8 <v < 8. The
measures for the correlations of the probtiles and the lediwe of the absolute probtiles show
avery weak dependency of the residual pdf, for all distidng. This shows that it is important
to use a distribution with fat tails, but the final methodglagyweakly sensitive to the details
of the distribution.

15.4 Backtesting the key components of the methodology

As a quick summary, the RM2006 methodology is based on an AR®EEss as a model for
the data generating process. The key components for thegg@nd risk methodology are
long memory for the volatility, correction for the scale bktresidual (i.e.y]AT]), Student
distribution for residuals, and corrections for the laggedelations between returns. This
contrasts with the standard RM1994 methodology, based @xponential memory, no cor-
rection for the residuals scale, Gaussian distributiod ramauto-correlations between returns.
Figure 39 shows the contribution of the pieces used to coctstne RM2006 methodology.
The labels correspond to the following risk methodologa$ging successively the differ-
ent components: LMPlusGaussian: long memory + Gaussiatuesss LMPlusStudent: long
memory + Student residues; LMPlusStudentPlusGamma: logmmory + Student residues
+ scale correction; RM2006: long memory + Student residussate correction + lagged
correlations corrections. We see that, depending on tloe ereasure, each part contributes
to the improved performance. In particular, the laggedetation corrections is an important
component.

16 Conclusion

We started this work with two simple ideas. First, a procéssikl be used to compute fore-
casts in order to be able to reach long risk horizons. Seomadshould use a long memory
process and a Student distribution for the residuals, doogito the recent progresses in fi-
nancial time series modelization. These two ideas correbpo the computations given in
appendix A. This improves the performances with respedtécekisting methodologies, but
the gains can be disappointingly small according to sonw emeasures, for examptl (see
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Figure 39: The main aggregated error measures, betweenaynandl one year, for the ICM data set. The
methodologies incorporate successively the main ingngslief the RM2006 methodology.

fig.35 and fig.39). Although these basic ideas are good, tteep@at good enough to lead to a
breakthrough.

The key to understand the limitation of this simple extensibthe standard methodology is
the weak correlations between lagged returns. Followiegtéixtbook argument, these cor-
relations should be very small otherwise they are arbiteagay. Indeed, our computations
of the lagged correlations for the daily returns is in agreenwith this idea. Possibly, rig-
orous testing of the null hypothesis of zero correlations loa rejected, but the correlations
are at the noise level (see the graph 16) and the statistiaehimery of hypothesis testing
should be brought in. If these correlations are nill, themlilest return forecast is also zero.
However, there are other better signatures for these etiont: lagged correlations of returns
at longer time horizons (e.g. monthly in fig. 17) and the staidddeviation of the (uncor-
rected) residuals (see fig. 25). The inclusion of laggedetations between the returns in
the process equations is straight forward, leading to tladytioal computations detailled in
appendix B. The inclusion of the resulting terms substéntimproves the performance of
the risk methodology. Therefore, the new RM2006 methodotam be summarized as based
on aARCH-like proceswith long memory+ Student distributior residuals scale correction
+ lagged correlations between returng\ll the ingredients contribute to the performances,
albeit possibly at different risk horizons or according tfiedent performance measures. At
the end, the new RM2006 is clearly a more complicated metloggiahan the simple expo-
nential moving average of RM1994. This is the price to paythfierincreased accuracies and
the possibility to reach long risk horizons.

This paper is devoted to the construction of the RM2006 nulogy. The approach consist
is separating as much as possible the different parts, godttty and test them separately. At
the very end, the influence of the various parts are quantisaty the backtesting methodol-
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ogy. Intentionally, we have not included a backtesting cangon with the existing method-
ology. The opposite approach is taken in the companion gdaperbach, 2006a] where many
methodologies are compared, but treated as black boxeaelsentence, the key result of the
systematic backtesting comparison is that the RM2006 ndelbgy improves the risk mea-
sures by a factor 1.5 to 3, for all risk measures consideratifa all risk horizons. This is a
large gain, which allows to have better risk estimates attsigk horizons and to be able to
compute meaningful figures at long risk horizons.

It is interesting to reflect on the “Amendment to the Capitakcérd to incorporate market
risks” [BIS, 1992] in view of our understanding of financiahe series and risk methodolo-
gies. The patrticular point in case is given in section B4nite(page 40). This point reads:

The choice ofhistorical observation periodsample period) for calculating
value-at-risk will be constrained to a minimum length of grear. For banks that
use a weighting scheme or other methods for the historicsgmation period, the
“effective” observation period must be at least one yeat (i, the weighted aver-
age time lag of the individual observations cannot be legs hmonths).

This last sentence can be translated in the condition

ml(n):.Z))\(n,i)i > 125day Vn (31)

wherem, stands for the first moment, amdis the risk horizomMAT expressed in day. With
an exponential weighting scheme with characteristic tiprees for the RM1994 methodology,
the first moment of the weight isy = 1. With the standard accepted value= 0.94, this
corresponds to 16 business days. Clearly, this value isfaetp meet the BIS criterion. For
the RM2006 methodology, a few values ang(1) = 44 daysym(21) = 61 days anany (260)
=100 days; none of them meet the BIS criterion. Methodowthat fullfil this BIS criterion
are the Equal weight and the historical methodologies. thely put too much weights on the
distant past, leading to a sub-optimal discounting of tHatudy clusters [Zumbach, 2006a].
Together, this shows that this BIS condition is too striridenan optimal risk evaluation.

As a direction for further works, a conceptually clean uniaste framework as this one should
help progressing in the more complex multivariate risk gsial This contribution uses only

a univariate analysis, eventhough many time series arefosdékde empirical analysis. The
extension of the current analytical framework to multiesgiprocesses is natural, as the equa-
tions involve only linear and quadratic terms. Yet, the maltiate empirical performances
should be investigated in details. Intuitively, the mwiiiriate correlations should be better es-
timated with a long memory kernel, as more returns are iredud the computations. Going
beyond this argument requires substantial work that weeléavfurther research.
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A Computation of the volatility forecast from the process equations

In [Zumbach, 2004], the volatility forecast for a slightlyone general class of processes is
given. The process we are using is called in this referenoagMemory Microscopic Linear
ARCH?” process, or LM-Mic-Lin-ARCH. For completeness, weghere the derivation of the
volatility forecast for this particular long memory proses

Using the process equations for the LM-Mic-Lin-ARCH prae&sand 6, the conditional ex-
pectations are given by the recursive equations:

E[of(t+jd) | Q)] = WE[og(t+(i—1)8)| Q)] (32)
+(1—)E [ 0Z(t+ (j—1)3t) | Q(t)]
E[o(t+jd) | Qt)] = ZWkE [of(t+jt) | Q(t)] (33)

for j > 1. Introducing the new variables

&(j) = E[of(t+jdt)|Q(t)] (34)
v(i) = E[d4(t+]jdt) | Q()],

the conditional average equations are reduced to

(i) = Hd&(]—1)+(1-pm)y(j—1) (35)
y(i) = W-&(j)
wherew is the vector of weightsai, and similarly ford andfl. We can introduce the diagonal

matrix My = & . With & v the Kronecker symbold = 1 if k=K, zero otherwise).
Both equations 35 can be combined

8(i) = {M+@-mw | 3(j - 1) (36)
wherel denotes the constant vecligr= 1. This equation can be iteratg¢dimes

- . =

3(j) = {M+(@-1w} 3(0) 37)

and3(0) is in the information set. This expression relaeso? | Q(t)] linearly to thea?(t).
Fory, the Eq. 35 can be expressed as

Y(i) = W(j)-8(0) (38)
with the coefficientsw () given by the recursive equation

W(i) = W(i-1){mM+A-pw O} (39)
W) = W.

Therefore, the coefficient®(j) can be evaluated priori, and the forecast for the effective
volatility computed by a simple scalar product. Using theperty 5, wx = 1 and the above
definitions, it is easy to show that

Kmax
Z wi(j)=1 for j > 0. (40)
K=1
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We can now express the above forecast equations in the foima 32 The iterative equa-
tion for OE can be unwinded in order to express the volatility with thggked returns and
exponential weights

(1— ) Z)uk re(t—iot) (41)
In practice, the sum over the lags needs be cut-off at sggend the formula becomes

oﬁ(t): T 1ok W r2(t—idt) (42)
1 lemax

This form is introduced in the definition 6 faiZ, to obtain the equation 3 with the weights

kmax
z e - f:q"ax (43)

As the process is defined with the constraﬁﬁgalxwk =1, the coefficienta (i) obey

Imax

_%)\(i) =1 (44)

The desired volatility forecast is
G2[AT](t) = E [ rAAT](t+AT) | Q(t) %E 2 (t+3t) | Q(t)] (45)

where the cross term in the expansionrfAT] vanishes because the autoregressive term
Her(t) is set to zero. The same substitution as in the forecastiegsaibove leads to eq. 12
with

I<max 1 n-1
% Wk |max pk (46)

with wi( j) given by the iterative equation 39. The iterative equatioth forecast coefficients
can be evaluated numerically very easily. Using the prgpgegiv(j) = 1, we obtain

Imax

.Z))\(n, i)=1  forn>0. (47)

When only one componemt,,, = 1 is taken in the LM-ARCH process, the equations are
reduced to an I-GARCH process. The coefficiantsare degenerate tw= 1. The equation
39 becomesv(j+1) =w(j), and the solution is(j) = 1. Inserting in eq. 46, we obtain

An,i) = 11;::% W= A(0). (48)

Therefore, for the -GARCH process, there is no dependenayio the forecast coefficients
A. This shows that the RiskMetrics EWMA formulation corres@de exactly to use an I-
GARCH process. In this sense, our new formulation usinggssees is a natural extension of
the existing methodology.
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Notice that the process can be defined in a more general fang asly eq. 3 for a given set

of coefficientA(i) (i.e. without using a LM-ARCH process with a set of undertyBWMA).
This formulation gives a broader class of process where deéficientsA(i) can be freely
specified, for example by a functional form. In this class odgesses, the resulting fore-
cast equation for the volatility is identical to eq. 12, b tequations leading to(n,i) are
more complicated. Yet, a LM-ARCH process already providesafconvenient and intuitive
parameterization of the coefficientsi), and this process is accurate enough for our purpose.

B Correctionsinduced by the AR terms

The analysis of the empirical data shows that an auto-rsigeeterm for the returns is im-
portant and introduces many corrections in the equationsthis section, we derive these
corrections in perturbation, assuming that the leadingn tergiven by the ARCH volatility,
and that the auto-regressive terms are smaller. With anragtessive (AR) term for the
returns, the process equations become:

X(t+6t) = x(t)+r[ot](t+dt) (49)

rotj(t+0t) = Mer(t) + Oen(t) €(t+0t) (50)
Omax

Her(t) = Z}u r(t—qot) (51)

O%l(t) = (Weo—B) 0% + (1 Weo) _%A(i)rz(t—iét) (52)

The auto-regressive coefficient for the poeturn isp(q) (be carefull not to confuseg(q) with
the decay coefficient of the EWM§). In the volatility equation foo, the first term in the
right hand side fixes the mean volatility. The parametgrsets the ratio between the mean
volatility o and the ARCH term. The lagged correlation for the returnefgdd as

o = ELBIO B+ 3

o = E[r?at]]

whereo is the mean volatility of the one day returns. The tgdris a function of the AR
parameters given by

B= 3 H(E po-q (). (54)

and is of ordeO(1?). The above equation for the volatility is with an affine term that fixes
the mean volatility. To obtain a linear process, we take= 3 ~ O(l?).

Using the usual properties far it is easy to show that for the above process equations, the
mean volatility is given by | r2[8t](t + &t) | = 0. The mean effective volatility is given by
E [ 0%(t) | =0 (1 P); it differs from the mean volatility by a term of ordgf.

The one day return correlations can be evaluated using eand81:
Efr()r(t+jot)] = Zu +(J—1-0)3t) | +E[r(t) O et +jot) ]

= Zu 0% Pj_1-q
q
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We obtain an equation for the correlations

Omax

pj=Y M) pj-1- (55)
j q; j-1-q

with po = 1. The solution fop can be expanded i and the leading term is
Pi=H(j-1)+0W) =1 (56)

This equation shows that the empirical lagged correlatippside a direct estimate @fj).
With financial data, the computation of the lagged correfetiusing the usual text book es-
timator proves to be problematic. This is due to the fat tatrtbution of the returns, and to
the possibly unclean raw data for less traded securitie=aryl a robust estimator is needed,
and we use thpsgpcorrelation estimator described in appendix C. When costpuiith the
one day return over the last 2 year of data, the robust esimsttl shows the trace of large
events. Particularly annoying is when a large event dropbthte 2 year windows, creating
an abrupt change in the correlation. To mitigate this effdw robust correlation is com-
puted with weighted returns, and the weights implement pkrinear decay in the 2 years
windows. When estimating the correlation at the tinihe returrr (t') is weighted with

t—t/
2 year

The weights have the advantage to put more emphasize ondéetneast, in line with the
volatility estimator.

wt') =1 for t—2year<t <t. (57)

The process equations are parametefizathat the mean one day voIatiIiE/[ r2[8t] } is
set bya?. For risk evaluations, the volatility at the horizaT is needed. This volatility is
different from the usual scaling/ AT /ot o because of the AR term. The meaday volatility
o[ndt] can be estimated using the aggregation of the returns:

n—-1

2
o?[ndt] = E[r?[ndt(t)] =E <%r[6t](t—j6t)>
=

n—1
— 0-2 ij_j/:OZ <n+22 Z p]_]/>

Ny I=1j'<j
AT 2"t
= 50 <1+ﬁj;(n—1)p]>.
This leads to the formula
oZ[nat]—E[rZ[nat](t)]—ﬂoz 1+2n71(1—1') - (58)
= == j; )P |-

The last contribution in the right hand side gives the cdioecdue to the AR term. This
computation shows that the volatility forecasts neededigbrestimations must be corrected
by the same factor. In practice, the correction term is ataflidirectly by

( r2[ndt](t)
ST or[at](t - jot)

) (59)

4We are deriving the effect of the autoregressive term in ags® set-up. In order to have well defined asymptotic prizsethe mean
volatility must be fixed by an appropriate constant, in oweza Therefore, in this section, we use an affine process [Zum2a04] (affine
in ogﬁ andr?). At the end of the computation, we set = 3 so that the parameterdisappears from the equation, and a linear (in the square)
process is obtained. This is legitimate, as our goal is topedenforecasts, for which well defined asymptotic properéiee not needed. In
this way, we have no mean volatility parameter, lke the final equations.
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where the empirical averadge is computed over the peridd- 2 years td. In the risk com-

putations, the volatility forecast?|AT](t), as computed in the previous section, is multiplied
by this factor.

In the empirical investigation, the lagged correlationstfe lagAT of the returng [AT] is of
particular interest. This term can be evaluated for our ggec

E[r[ndt](t) r[ndt](t+ndt)] = Z E[r(t+(n—j)dt)rt—j'dt)]

2n—1

= Z Pnjij = O Z —In=jl)p

j,1’'=0

The desired correlation is therefore

_ E[r[ndt)(t) rndt](t+ndt)]  no? 2l
Pn[ndt] = E[r2[ndt](t) ] ~ o2[ndt] jzl (1 ‘

This equation shows that even when the one day correlapipase small, their effects can

accumulate and lead to larger correlations at longer timzas. In particular, the empirical

one day lagged correlations can be below the statisticaifgignce threshold, yet they lead to
significant correlations at longer time horizons.

1—H)m (60)

Finally, the auto-regressive term induces a non zero fetdoathe return. Let us define
a(j) =E[r(t+jot) [ Q(t)] (61)

In order to simplify the computations, let us defing) = O for g > gmax. Using the process
equation 50, we obtain

Z +(i=i08) [+ S k(i) rt+(—i)at)
/: J/:]
from which a recursion equation faris obtained:
] -1
aAj+1)= 5 w(i+i)rt- ’6t+z (i’ ai—1i’) (62)

i’=o0
With p < 1, we havea = O() and the second sum can be neglected. The desired fofggast
is given by

by = E[r[AT]t+AT)|Q(t) i

o n-1

= 3 3 M
i=o o

and can be set in the same form as the volatility forecast

Omax

Mo = ; u(n, j) r(t—jat) (63)
n—-1
u(n,j) = JZOH(H-J)
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As explained above, the coefficients)) are evaluated using the robust estimategpfor the
lagged correlations (computed with weighted one day rejurithen, the return forecast is
computed using the formula 63. The number of lags to congiderbeen investigated em-
pirically. An important factor in this choice is related thost term interest rates. Typically,
the central banks set the overnight interest rates and gntigifrate on a monthly basis. This
human intervention is particularly obvious for the dollater and creates strong lagged corre-
lations up to a month. For this reason, we choggsg= 23 days. An empirical investigation
for this parameter shows that this is a good choice.

Long term drifts are also important, particularly for ste@dnd stock indexes. A measure for
the long term drift, scaled & =1 day, is given by

ot

2years (X(t) —x(t— 2 yea) (64)

Haritt =
where this estimator uses the last 2 years of data. The gpfiopriates for a forecast at risk
horizon AT should be scaled b&T /dt. In back testing, this estimator appears to be fairly
good. This estimator can be rewritten as

1

Marit = n Z r(t/) (65)
t—2 yeaxt/<t

wheren is the number of days in the sum. The final forecast for the &egereturn is the
sum of the short term auto-regressive part and of the long thift. As we are using both
estimations, we want to avoid the double counting of the.dfifierefore, when a drift is also
used, the auto-regressive part is modified by

n-1

u(n, j) = z (i +1i")

i’=0

~ 2year (66)

C Computation of the correlations

By default, the correlation is evaluated by the usual Pegpsoduct of standardized variables.
Yet, for random variables with fat tails distributions,dlgistimator has the disadvantage of be-
ing very sensitive to extreme events. To mitigate this e¢ff@e have tried two other estimators
of dependency. After evaluation of the three correlatidimegtors on financial time series, we
decided to used thesspestimator as it provides for a good compromise between tobss
and computational efficiency.

A robust correlation measure is given by the Kendall's Taunedor 1 (as described for ex-
ample in the Numerical Recipes [Press et al., 2002]). Indskog, 2000], the author proves
that for elliptical distribution, the relation

2 . 4
_ = 67
T nsm p (67)

holds between the linear correlation and the Kendall taterdfore, we use the Kendall Tau
correlation estimator

pr = Sin (%) . (68)

This estimator is robust, but the evaluation time grows-ag. For large scale computations,
this is a clear drawback even with today computers.
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[Gnanadeskian and Kettenring, 1972] have introduced anotibust estimator for dependency.
In a finance context, it has been used for example by [LindskR0Q0] to study correlations
in elliptical distributions with fat tail marginals. Thetéwator is based on standardized sums
and differences, and is callpdsp For a time series x, the standardized time series is

X—X

o (69)

X =

with X the mean ok ando? = Var(x) the variance ok. Then, the usual (Pearson) correlation
can be written as
Var(X+ V) — Var(X—Y)

Var(X+ ) + Var(X—Y) (70)

p(Xy) =Xy =

A robust estimator for the correlation is obtained by replgt¢he usual variance estimator by
a robust one. In this work, we have used the mean absolutatadev{(MAD) as a more robust
estimator than the variance

MAD (x) = % i\'Xi — mediar{x)| (71)

We define theasspdependency measure by

MAD (%+§) — MAD (X— )
MAD (%+ ) + MAD (X—¥)

TSS[(Xv y) = (72)
Empirically, this estimator is close to the Kendall Tau, dahdrefore a similar relationship
with the usual linear correlation seems plausible. We defiegobust measure of correlation
based on the standardized sum and difference as

. (TT
Pssp= sm( ZSSD) . (73)
This estimator is robust (but less robust than the Kendal),Tand the computational time
grows as~ n (because the MAD evaluation requires computing the mediad,this can be
done in O(n) time as a complete ordering is not needed [Pteds 2002]). As 2 years of data
is already larga ~ 520, this estimator proves to be substantially faster tharkendall Tau.
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D FAQ

What isthis memory decay for the volatility?

The volatility of the financial time series changes with timamely there are periods of high
volatility and periods of low volatility. This is theeteroskedasticityneaning that the variance
is not constant but is clustered. Thus, the volatility sheasie persistence, or “memory”. To
guantify the persistence, the lagged correlation of thatildy is computed. The decrease of
the correlation measures how and how fast the clusters atiligl can appear and change.
This lagged correlation is a characterization of the “meyhof the volatility.

This memory is crucial for risk estimation. The importantrido realize is that a risk evalu-
ation is a forecast, namely an estimate of the possible fiablosses between now and some
future date. Beside, the magnitude of the risk is directlypprtional to the volatility. Be-
cause of the memory of the volatility, forecasting the \ibitsitis possible, and hence a risk
estimation.

Why a single decay factor can be used in the RM 1994 methodology The fact that an
EWMA with a “universal” decay factor gives good forecastsdgery security can be under-
stood with the following argument. To a decay factopct0.94 corresponds an exponential
with a characteristic time = —1/In(Y) ~ 16.2 business day. The memory for the volatility
—as measured for example by the lagged correlation of thawabseturn— decays slowly (as
a logarithm). Therefore, most of the information comes frilv® most recent past, and the
forecast should put the largest weights on the few lastmetu®n the other hand, using only
a few returns leads to a fairly noisy estimator, and a bettdrstic requires to use as many
returns as possible. Therefore, there is a trade off betwdene most of the information lies
and the variance of the forecast estimator. The optimagtodids obtained for an intermediate
horizon, in the range of 10 to 40 days. This argument is genas the only financial time
series property used is the decay of the lagged correlatidnis decay is fairly similar for all
time series and therefore, the same value can be used fecaliises.

What isthe optimal decay factor for the RM 1994 methodology?

The optimal decay factor depends on the risk horizon: thgdothe risk horizon, the closer the
decay factor should be to 1. For the volatility forecasts,dptimal values for the characteristic
timet can be read from figure 13 and converted to the decay factog pst exp(—1/1) with

T expressed in days. Backtesting the RM1994 methodology me tto[Zumbach, 2006a]
indicates slightly larger optimal values.

For risk evaluation at long time horizons, is it better to use returns with longer time
intervals, say for example weekly or monthly returns?

The short answer is that, with the new methodology, it is guaetter to use daily returns.
For the other methodologies, the long answer involves twesliof arguments related to the
minimal sufficient statistics and to the correlation betwesturns.

The “minimal sufficient statistics” answers the followingestion. Let us estimate a given
statistical quantity, say for example the long term mearhefreturn. What is the minimal
amount of information that should be given to be able to campmithout loss of accuracy, the
desired statistical quantity? This minimal informatiorc&led “minimal sufficient statistics”.
For the example of the long term mean, only the start and elmggare sufficient. This
is a considerable reduction of the data set as only threeesadve needed (the two prices
and the time interval). For the volatility, the answer istthl the (absolute values of the)
returns should be given. Any reduction of the data set isitgpimformation. In other words,
the returns at the highest frequency should be used. Thikeisnihat the volatility (and its
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forecasts) should be computed with daily returns (even maffr@ent would be to use intra-
day prices).

Yet, the whole situation is not so simple because of the ldggerelations between returns.
These correlations create serial dependencies, whichidsnfiate [ r2[3t] | # E [ r2[AT] ].
This inequality means that the variance of the returns isedéent on the risk horizon, an
effect that can be observed on fig. 25. For a given risk hor&xbnthe relevant quantity is
a forecast folE [ r?[AT] |. Therefore, the aggregated retwfAT] should be used so that the
serial correlations are included in the computations.

As both arguments go in the opposite directions, the optimlale for the return time horizon

should be somewhere betwestr= 1 day and the risk horizoAAT. As the lagged correlations

are small, the optimal is likely close to one day. Beyond #iisple argument, an answer to
the above question would require a specific quantitativeystu

In the new RM2006 methodology, the lagged correlations betwthe returns are computed
and discounted explicitely. Therefore, only the argumdraua minimal sufficient statistics

applies, and it is always better to use one day returns inahgatations. Using any longer
time interval for the returns leads to a loss of accuracy.

Why not usea GARCH(1,1) process to improve the risk methodology?
The GARCH(1,1) process is parameterized by 3 values, tipidanoted by(o,a1,B1) or
by (w,a,B). A combination of these parameters fixes the mean volatildynely

E[r?] =E[0?] @

"1 a p (74)

Because the mean volatility [ rz] is strongly asset dependent, the parameters cannot be
chosen with the same values for all time series. For a ureweith n assets, a multivariate
GARCH(1,1) should have at leastparameters, and possib(n?) parameters. This would

be very impractical and very fragile.

Another reason is related to the decay of the correlatioa t8ARCH(1,1) process. The decay
of the correlation for the volatility can be computed aniabfy for this process, and is found

to be exponential. On the other hand, the empirical timesdrave a much slower logarithmic
decay. Therefore, the volatility forecasts derived fromaR&H(1,1) process are not optimal.
Both reasons lead us to use a long memory process, as expiaisec. 2.1

Why not use a Student distribution with the RM 1994 methodology?

You can, but the improvement is not that large. To improvai§icantly the RM1994 method-
ology, several modifications must be done. For example, the3 shows a comparison
between RM1994, Long memory + Student, and RM2006.

Beyond the underlying risk methodology, why is the risk evaluation of actual securities

so complicated?

This paper discusses risk methodologies, namely given singpte” asset, it shows how to
compute a risk estimate. A “simple” base time series is dallesk factor. They corresponds
essentially to linear assets, like equities or foreign exgje currencies. Yet, today’s financial
world uses derivatives, possibly with very complex stroesu These derivatives should be
priced as a function of the underlying risk factors, and ¢hesntracts can be fairly sophis-
ticated. Another example of “derivative” are bonds: theenhdng simple risk factor is the
interest rate curve as function of the maturity. The varibaeds, with the coupons occur-
ing at various time point, should be priced from the undedyinterest rates and the cash
flows stream. More complex derivatives can be for exampleio on a swap for interest
rates (i.e. a swaption). Moreover, some trading strategiedve long and short positions in
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derivatives and the underlying assets. These kinds okgikst can expose the discrepancies
between the option pricing used in the market and in the nakuation. Therefore, the option
pricing used in risk evaluation has to follow closely thetlactice used in the market. This
is a first level of complexity.

A second level of complexity is related to the actual detaflshe financial contracts. For
example, a simple bond pays coupons according to a giverslgheln order to price this
bond from the interest rates curve, the actual coupon stéhetust be known. Therefore, itis
not enough to have long time series for the prices of the astofs, theaerms and conditions
of the actual contracts should also be available.

A third level of complexity is related to the detailed anadysf the risks inside a portfolio:
beyond the global risk figure, one also would like to underdtevhere the risks originate
from. For example, an analysis according to the currenaigsdustrial sectors can give a
diagnostic that will help reducing the risk exposure. lhssgabout more global changes can
be obtained by scenario analysis, or “what if” analysis (whail prices rise? What if the
USD interest rates rise? etc...). Possibly, hedges candezlad a portfolio following such an
analysis.

At the end, the techniques presented in this paper are tmel&bion of risk evaluations, yet
they represent only a tiny fraction of the software in todaplecations developed for risk
management. A large part of such softwares correspond tbr#teand third points above,
whereas the second point requires painstakingly maimgilairge data bases feeded by many
data sources. Moreover, today users expect convenient-gdaclick tools to analyse and
understand the risks of their positions. Eventhough theRBI2006 methodology can appear
as being quite complex, it is just a small part in a much larngachinery.

60



ot:
AT:

PaT (€):

Y|AT]:

Ot

Ok

Notation

The elementary time step for the process, in our éasel day.
The risk horizon (i.e. a time interval).

The number of days for the risk horizon= AT /&t.

. Index for the days in the futured j <n.

The price time series.

: The return time series, witHAt](t) = p(t) — p(t — At).

The returns at a one day horizon are abbreviateddy=r.
The residual time seriesAT]. See eq. 15 and 16.

The probability distribution for the residuals. In pript?, the shape of the distribution
can depend oAT.

The scale factor such th&?[AT]) = 1. See eq. 16 and 17.
The “effective” volatility, as given by a particular prags
The component index for the multiscales long memory ARCHiehd < k < K.

The volatility measured by an EWMA (exponential movingage) at the time horizon
Tk.

The decay coefficient for thie-th EWMA with characteristic timay in a multi-time
scales ARCH process9 i < 1 andpy = exp(—ot /Ty).

. The weight for th&k-th component in a multi-time scales ARCH process. The aoeffts

must obey K wi <1 andy, wi = 1.

. The decay coefficient for the weighitg with a logarithmic decay form.

. In the computation of the effective volatility, the weidgbt the lagi return square. This

corresponds to the weights for a 1-step foredasti).

i): In the computation of the steps forecasted volatility, the weight for the lageturn

square.

. The index for the days in the pastOi < i, for the volatility computation.
: The autoregressive terpg(t) = ngbx p(q) r(t—qdt).

: The coefficients for the expansion of the autoregressive (beware not to confug€q)

with the decay coefficientg of the EWMA).

The index for the days in the past for the auto-regressived®< q < Qmax

i The lagged correlation for the one day return, for thejidtg
: The lagged correlation for th& days return.

: The yield (or interest rate) for a time-to-maturity, typically related to a bond with

maturity at timet + At.
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