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Abstract

A new methodology to evaluate market risks is introduced. Itis designed to be more accurate than the existing
methodologies, and to be able to reach long risk horizons, upto one year. Consistency across risk horizons is
obtained by building the methodology using a long memory ARCH process to compute the required forecasts.
A large data set covering the main asset classes and geographical areas is used to validate the various sub-
components of the methodology. Extensive backtesting using probtiles is done to assess the final performance,
as well as the contributions of the various parts. One key quantitative result is that the new methodology applied
to a risk horizon of three months is more accurate than the exponential moving average scheme at a risk horizon
of one day. This quantitative improvement allows us to analyse risks in a portfolio both at tactical and strategic
time horizons.
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1 Introduction

Nowadays, risk management is an integral part of the financial world. For market risk, the
goal is to assess the magnitude of large potential losses in aportfolio due to adverse price
fluctuations. One of the accepted basic methodologies was established in a seminal paper
[Mina and Xiao, 2001] by researchers at JP Morgan (see also [Mina and Xiao, 2001]). This
methodology was used for the internal risk control inside the bank, and its public disclosure
raised a strong interest in the financial industry. In turn, it leads to the spin-off of the risk
control group, and subsequently to the creation of a whole industry around risk management
for various financial institutions. We call this methodology RM1994. Another important risk
methodology is called thehistorical methodology, and is essentially a resampling of the his-
torical returns. Beyond the basic methodologies, the software tools developed for computing
risks have become very sophisticated in order to allow for the diversity of structured products
and complex derivatives. Moreover, the dependencies on basic risk factors must be computed
for sensitivity analysis or scenario simulations. For example, all the bonds and derivatives are
dependent on interest rates, and changing one rate will influence simultaneously many assets
in a portfolio.

Since their inception in early nineties, the basic methodologies have stay unchanged. For
the RM1994 methodology, the computation relies on the measure of the volatilities and cor-
relations present in the historical data. These quantitiesare computed by a simple estimator
given by an exponential moving average (EWMA). For the historical methodology, one year of
equally weighted historical data is used. Using a Gaussian assumption for the residuals allows
us to perform Monte Carlo simulations or to compute tail probabilities. The key advantage
of these basic methodologies is their simplicity, conceptually and computationally. With the
EWMA weighting, the volatility and correlation estimator depends on one parameter, namely
the decay factor of the exponential. For assessing risk at a one day horizon, empirical studies
show that the decay factor 0.94 provides a good estimate for all assets. Having only one pa-
rameter for all time series contributes to the simplicity ofthe RM1994 methodology and to its
wide acceptance.

The need for a volatility forecast in a risk computation is rooted in the heteroscedasticity of
the financial time series. Because the volatility is time varying, the estimation of the tail prob-
abilities requires a forecast for the (cumulative) volatility until the considered time horizon
∆T. The RiskMetrics EWMA weighting scheme, scaled by

√
∆T, is a simple and effective

volatility forecast. Yet, the optimal decay factor must be adjusted to the desired horizon∆T.
This occurs because a long term forecast must use more information from the distant past than
a short term forecast. This is one drawback of the current methodology, as the main parameter
should be adjusted for each risk horizon.

Since the inception of the original RiskMetrics methodology, our knowledge of financial time
series has progressed in several directions.

• The volatility dynamic is better understood. In particular, the long memory of the volatil-
ity is observed in all time series. A quatitative measure is given for example by the lagged
correlations of the squared returns, and the correlations are observed to decay as a log-
arithm of the lags. Notice that a GARCH(1,1) process has an exponential decay for the
volatility correlations.

• The probability distributions of the returns have fat tails, even at time horizons of several
days, and with tail exponents in the range 3 to 5. The implication of this observation
on risk estimates is a bit subtle, because of the difference between the unconditional
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probability distribution of the return and the distribution conditional on the volatility
forecast. As explained later, the relevant distribution concerns the conditional distri-
bution, as captured by the residualsε = r/σ̃. As shown in sec 14, the distributions
for the residuals are observed to also have fat tails, albeitwith a slightly larger ex-
ponent than the unconditional returns. The Gaussian assumption used in the standard
methodologies is at odds with these empirical observations. Several authors (see e.g.
[Pafka and Kondor, 2001, Bormetti et al., 2006]) have criticise this aspect of the standard
methodologies, and have proposed to use fat tail distributions instead of a Gaussian.

• Volatility forecasts have progressed. Particularly relevant to the application in risk eval-
uations is the connection between processes and forecasts,the distinction between linear
and affine processes and the construction of processes with long memory [Zumbach, 2004,
Zumbach, 2006b].

The purpose of this paper is to incorporate the state of the art knowledge in risk management,
while retaining the simplicity in the methodology that contributed to the success and wide
acceptance of the original RiskMetrics scheme. The key ideais to introduce aprocessthat
leads to simple volatility forecasts, and that incorporates the long memory observed in the
empirical data. Moreover, when the process is chosen to be anI-GARCH(1) process, the new
scheme reproduces the original EWMA computation. In this sense, the new scheme is an
extension of the current accepted RM1994 methodology.

Using a process to infer volatility forecasts has another key advantage: the same process and
parameters can be used for every forecast horizon∆T. In this way, one gains a strong con-
sistency in the methodology, for all horizons. Thanks to this consistency, long term horizons
can also be dealt with, even though the amount of independentdata is clearly insufficient to
validate the forecasts using backtesting. More precisely,our ambition is to be able to com-
pute meaningful risk figures up to a one year horizon. This is of critical interest for pension
funds or insurance firms that have a basic business cycle of one year. Yet, the whole financial
community will benefit from being able to assess its risk for horizons longer than a few days.

Dealing with risk evaluation for medium to long term horizons is clearly a very difficult topic.
The difficulty can be measured by the scarcity of the publications, mostly originating from a
group at the ETHZ [Embrecht et al., 2005, McNeil and Frey, 2000] and [Diebold et al., 1998].
The origin of the difficulty can be understood from the following diagram.

return

residual

u u

u

δt = 1 day

u

∆T

aa!!
aggregation

LL ��

r[1d]/σ̃[1d]

LL ��

r[∆T]/σ̃[∆T]

aa!!
???

On the left side is the one day horizon (denoted 1d), at which most of the data is available.
On the right side is the desired risk horizon∆T, say for example one year. The top line
corresponds to the returns. Moving from one day returns to∆T days returns can be easily
done by aggregation, for example a one year return is a sum of 260 consecutive daily returns.
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The bottom line corresponds to the residualsε[∆T] = r[∆T]/σ̃[∆T]. This is the variable taken
to be iid, and for example drawn randomly in a Monte Carlo VaR simulation. Investigating its
properties is the key to understanding risk. For example, the forecast̃σ used in computing the
residuals must be such thatε is iid, and this needs to be validated by backtesting. It can be
done at a daily horizon (vertical left arrow) because there is enough data. Yet, it is not possible
to carry the same program on much longer horizons, because the data become too scarce to do
the required backtesting: clearly, it is impossible to study forecasts and tail events with only
10 to 50 data points. An alternate route is the bottow dashed arrow, but residuals do not have
an aggregation property. To compute risk at long time horizons requires reaching the bottom
right corner, but both routes are blocked (lack of data or no aggregation property).

Introducing a process at a daily frequency allows us to resolve this dilemma. The process
uses daily data and induces forecasts for any time horizon. The forecasts can be computed
analytically and do not contain new parameters. This is veryimportant as the framework can
be tested for time horizons where enough data is available; then the consistency brought in
by the process allows us to reach time horizons where backtesting is very limited. This key
idea can be expressed in the following representation by adding another way to reach the risk
horizon∆T for the volatility forecast.

return

residual

u u

u

δt = 1 day

u

∆T

volatility u u

aa!!
aggregation

aa!!
process + cond.expt.

LL ��

r[1d]/σ̃[1d]

LL ��

r[∆T]/σ̃[∆T]

In [Embrecht et al., 2005, McNeil and Frey, 2000], a somewhatsimilar line of thought is used.
The authors use a GARCH(1,1) process, supplemented with thetheoretical aggregation rules
for the GARCH(1,1) parameters derived by [Drost and Nijman,1993], in order to compute a
one-step volatility forecast for the aggregated return at the risk horizon∆T. This approach
suffers from a number of drawbacks. First, a GARCH(1,1) process has an exponential mem-
ory, and therefore does not correctly capture the slow decayof the lagged correlations. In
other words, the volatility forecast does not use at best theavailable information. A second
drawback is that the process cannot easily be changed as the aggregation rules are known only
for the GARCH(1,1) process. This makes it difficult to incorporate the long memory, for ex-
ample. Third, the mean volatility is one of the process parameters and is strongly time series
dependent. The GARCH(1,1) process depends on three parameters. The process equations are
affine (in the return square and volatility square), and the additive term, usually denotedα0 or
ω, fixes the mean volatility. One can argue about a “one size fitsall” approach for the other
two parameters, but this will not work for the mean volatility. For a portfolio, one has a pa-
rameter estimation problem with a size that grows with the number of time series. By contrast,
the I-GARCH(1) process equations are linear instead (in thereturn square) and depend only
on one time decay factor (see page 9 for the difference between linear and affine processes).
This decay factor can be chosen so as to give good volatility forecasts for most time series.

A risk methodology should be rooted in the empirical properties of the financial time series.
A thorough understanding of the “stylized facts” is needed in order to select the appropriate
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model and parameters. Because a risk methodology is appliedto so many time series, it is
essential that the model be “universal”, namely that it captures the generic properties of the
data. It should also includes a quantification of the different properties in order to select the
most appropriate level of description. To some extend, building a risk methodology is an
engineering problem: one has to pick the important parts andneglect smaller or particular
effects. For this purpose, large scale empirical studies should be done, the generic features
described, and possibly approximations made. This approach contrasts with an academic
study, where often a rigorous answer to a well posed questionis sought after. For these reasons,
a large part of this paper is devoted to empirical studies of an extended set of time series, to
check that our description is appropriate. Our aim is not to be rigorous (say in the sense of
hypothesis testing), but to be “overall quantitatively correct”.

Building a risk methodology involves many dependent parts related to the forecasts, corre-
lations and residuals. In the end, the empirical results depend on all the parts together, and
it is in general not possible to completely extract the various sub-components for individual
testing. In other words, a risk methodology cannot be built with a completely constructive ap-
proach. The sub-parts that can be isolated are mainly the description of the lagged correlations
for the returns and absolute returns, and the forecasts for the return and volatility. From this
dependency structure follows the organization of this paper.

The next section introduces the methodology (Section 2.1),the process with the related fore-
casts (Section 2.2) and the residuals (Section 2.3). The theoretical part is completed by the
Appendices A and B which contain the detailed analytical computations. The empirical in-
vestigation is done using a set of time series detailed in Section 3 and covering most of the
asset classes and world geographic areas. The empirical part is organized roughly around the
sequence: price (Section 4)→ volatility (Section 6 and 7)→ return (Section 8 and 9)→
residual (Section 10 to 14). Each section is devoted to one relevant property (lagged corre-
lations, forecasts, variances, pdf, etc...). Then, all thepieces are put together for backtesting
in Section 15. The presentation of backtesting is divided insubsections concerning the return
forecasts (15.1), volatility forecasts (15.2), residualspdf (15.3), and how the performances
change as the various ingredients are added in the methodology (15.4). The conclusion sum-
marises the new risk methodology and the empirical findings.The appendix A presents the
detailled analytical computations related to the long memory ARCH process, and the appendix
B the analytical part related to the AR term in the process. The three estimators used to com-
pute correlations are presented in Appendix C, with a short discussion of their main properties
regarding robustness and computation time. Finally, a set of frequently ask questions is given
in appendix D.

2 Methodology

2.1 Sketching the idea

In this section, we present the key ideas and equations for using quadratic processes for risk
evaluations. The detailled derivation of the forecast equations is given in the appendixes that
can be skipped in a first reading.

Our strategy to evaluate risk at a time horizon∆T is:

• To model the data atδt = one day using a (long memory ARCH) process.

• To infer the required mean return and volatility forecasts at the desired risk horizon∆T
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by using the process properties and the aggregation of the returns.

• To use a location/size/shape decomposition for the probability distribution of the returns.
The location and size correspond respectively to the mean return and volatility forecasts
derived from the process. The random variable appearing in this decomposition is called
the residuals.

When building a new risk methodology, the last step is used inthe other direction using his-
torical data. The historical returns are standardized at the risk horizon∆T using the forecasts
for the mean returns and volatility, in order to obtain the (historical) residuals. The empirical
properties of the residuals can then be studied.

The one business day horizon at which the data are available is denoted byδt. In the risk
industry, it is common to work with daily data as they take care in a natural way of the daily and
weekly seasonalities1. Yet, in our derivation, nothing is specific to this particular time horizon.
It would be easy to take a shorter time step for the process, provided that the seasonalities are
properly discounted. The desired risk time horizon is denoted by∆T, and in principle can take
any value with∆T ≥ δt.

The process follows a standard ARCH set-up:

x(t +δt) = x(t)+ r[δt](t +δt) (1)

r[δt](t +δt) = µeff(t) + σeff(t) ε(t +δt) (2)

where

• x(t): the transformed price. For most securities,x is the logarithm of the pricex(t) =
ln(p(t)), but the transformation is slightly different for bonds (see section 4).

• r[δt]: the return for the time horizonδt = 1 day.

• µeff: the mean return in the next time increment. In most process studies, this term is
zero, because the empirical lagged correlation for the return is negligible. As we will
see later in sec. 8, neglecting this term is not a valid assumption, particularly for interest
rates.

• σeff: the effective volatility in the next time periodδt. This is the key term that models
the heteroscedasticity of the financial time series. We consider the class of processes
whereσ2

eff is a linear function of the past squared returns

σ2
eff(t) = ∑

i≥0
λ(i) r2(t− iδt) λ(i) > 0 (3)

with ∑i≥0λ(i) = 1.

• ε: iid random variable with distributionp(ε). The distributionp(ε) must be such that
E [ ε ] = 0 andE

[
ε2
]
= 1.

The most important property of the process is embedded in theweightsλ(i). When the weights
decay logarithmically

λ(i) ≃ 1− ln(i δt)
ln(τ0)

(4)

1A seasonality is a statistical pattern that repeat itself after a given time interval. In financial time series, they occur mainly with a daily
and weekly frequency, corresponding respectively to the daily activity cycle (day/night) and weekly activity cycle (no financial transactions
during the week-end). The intra-day volatility behavior isdominated by these two strong seasonalities and the heteroskedasticity can be
observed only after discounting them.
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the lagged correlation of|r| decays also logarithmically. This is precisely the long memory
observed in the financial time series we want to capture. On the other hand, when the weights
decay as an exponentialλ(i) ≃ exp(−i δt/τ), the process reproduces the EWMA used in the
current RiskMetrics methodology. Finally, a constant weight λ(i) = 1/imax up to the cutoff
imax = 260 reproduces the “Equal Weight” model which uses one year of equally weighted his-
torical returns. In this way, our framework includes all thecurrently accepted methodologies
2.

The long memory process we consider is naturally expressed in a different form. A set of
(historical) volatilitiesσk are evaluated on geometric time horizonsτk:

τk = τ1 ρk−1 k = 1, · · · ,kmax

µk = exp(− δt/τk) (5)

σ2
k(t) = µk σ2

k(t−δt)+(1−µk)r
2(t).

Essentially,σk is an exponential moving average of the return square, with acharacteristic time
τk. The effective volatility is obtained as a sum over the historical volatilities, with weights
that decay logarithmically

σ2
eff(t) =

kmax

∑
k=1

wk σ2
k(t) (6)

wk =
1
C

(
1− ln(τk)

ln(τ0)

)
. (7)

The normalization constantC is chosen such that∑k wk = 1. The model is conveniently pa-
rameterized by the three time intervalsτ0 (logarithmic decay factor),τ1 (lower cut-off) and
τkmax (upper cut-off). The parameterρ does not influence the properties of the process for
ρ ≃ 1, and we takeρ =

√
2. In essence, this model is a sum of EWMA (exponential moving

average) over increasing time horizons. This structure captures in a simple way the multiscale
structure of the markets, with market participants acting mainly at intra-day, daily, weekly and
monthly time horizons. By unwinding the EWMA in the definition of σk, and inserting in
eq. 6, the form 3 is obtained with

λ(i) =
kmax

∑
k=1

wk (1−µk) µi
k

An important distinction in the analytical form of the volatility process is the affine versus
linear structure. A linear volatility process has a structure of the form 3, where the volatility
square is a linear combination of the past returns square. Inan affine process, this structure is
modified by an additive term that fixes the mean volatility

σ2
eff(t) = w∞σ2+(1−w∞)∑

i≥0
λ(i) r2(t− iδt). (8)

The parameterσ is equal to the unconditional mean volatility, andw∞ is a “coupling constant”
that fixes the convex combination between a constant mean volatility and the auto-regressive

2This is not the most general formulation of quadratic volatility model, as we include only one day returns at equal time. Amodel with
different return time horizons, but still at equal time, is given by

σ2
eff(t) = ∑

i≥0
∑
j≥1

λ(i, j) r [ jδt]2(t − iδt)

and is explored in [Zumbach, 2004]. We restrict ourself to the form 3 in order to keep efficient the numerical computationsof the forecast.
When returns at longer time horizons are used in the process,the volatility forecasts cannot anymore be expressed as in eq. 12
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volatility term. For a given memory structureλ(i), the linear and affine processes can be build.
For example, with an exponential memory, the I-GARCH(1) is the linear model whereas the
GARCH(1,1) is the affine version. The number of parameters differs by 2, corresponding to
σ andw∞. Clearly, the mean volatility parameterσ is time series dependent. For risk esti-
mation on large scale, it is not possible to have a number of parameters proportional to the
number of assets in a portfolio. In order to avoid this bad estimation problem, we have to use
linear model. This criterion eliminates the (affine) GARCH(1,1) process and its generaliza-
tions. As processes, the asymptotic properties of the linear models are not well defined (see
[Nelson, 1990] and [Zumbach, 2004] for a detailled discussion of this point). Yet, as we use
the process equations to derive a forecast, this long term asymptotic subtlety is irrelevant for
our purpose.

2.2 Forecast using processes

In principle, any process induces a forecast through conditional expectations. For quadratic
processes, the integral implied in the conditional expectation

E
[

r2[δt](t ′) | Ω(t)
]

t ′ > t

can be computed analytically. Because the class of processes we consider is given by iterative
equations (from the states att, they give the states att +δt), iterative equations are obtained
which express the forecast att ′ as a function of the forecast att ′− δt. These equations can
be iterated untilt ′ = t. If the scheme is straight forward, the actual analytical computations
are a bit involved because of the multiple terms in the process equations. The details of these
computations are given in the appendix A.

Inferring the forecasts from a process has two key advantages. First, the forecast inherits its
properties from the process. For example, if the process is short or long memory (i.e. with an
exponential, power law or logarithmic form forλi), the forecast will have the same memory
structure. This is the reason why the structure of the process should capture as well as possible
the main stylized facts observed in the empirical data. Second, the forecast depends only on
the process parameters, namely there is no additional parameter regardless of the forecast
horizon∆T. This strategy ensures a strong consistency across the forecast horizon∆T, where
moreover the information at the daily horizon is used at its best. Because of this consistency,
inferring the forecast from a process at the daily horizon allows us to reach long risk horizons,
where backtesting of an unconstrained forecast would be very difficult or even impossible.

For risk evaluations at the time horizon∆T, we are interested in the distribution of the return
r[∆T] at this horizon. The return at the time interval∆T is given simply by the aggregation of
the daily returns

r[∆T](t +∆T) = ∑
t<t ′≤t+∆T

r[δt](t ′) (9)

Because of the heteroscedasticity of the volatility, a key quantity is the forecasted volatility at
horizon∆T:

σ̃2[∆T](t) = E
[

r2[∆T](t +∆T) | Ω(t)
]

(10)

where the notation emphasizes that this is a forecast computed att for the volatility of the
price change in the next time periodr[∆T](t + ∆T). Using the process equations and the
aggregation of the daily return, the right hand side can be computed explicitely as a function
of the quantities in the information setΩ(t). This step is the crux of the method as it relates
the forecasts at∆T = n δt to δt, using the process properties.
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Figure 1: The weightλ(n, i) versus the lagi for the I-GARCH and long memory processes. The curves with
labels “long memory 1 day” and “long memory 1 year” correspond to the long memory process, for a forecast
horizon of one day and one year repectively.

The equations are simpler when the autoregressive termµeff(t) is absent. In this case,

E
[

r[δt](t ′) r[δt](t ′′) | Ω(t)
]
= 0 for t ′ 6= t ′′, (11)

and the cross terms cancel after the expansion of the square.Then, the volatility forecast can
be expressed in the simple form

σ̃2[∆T](t) =
∆T
δt ∑

i≥0
λ(n, i) r2(t− i δt) (12)

with ∆T = n δt. The coefficientsλ obey∑i≥0λ(n, i) = 1 for all n, and can be computed by
recursion equations. This form for the forecast shows the strong similarity between the one
step forecast as used in the process definition in eq. 3, and the n-step forecast. The leading
term in eq. 12 is given bỹσ ≃

√
∆T/δt, namely by a “square root law” of the risk horizon.

This leading term originates in the diffusive nature of the process, namely the (logarithmic)
price process follows a random walk. Then, the coefficientλ(n, i) brings in the corrections
due to the particular memory structure of the process.

The current RiskMetrics methodology, with an EWMA weighting, can be cast in the current
processes framework by taking an I-GARCH process, for which

λ(i) =
1−µ

1−µimax
µi (13)

(the above long memory process is reduced to this form when one componentkmax = 1 is used).
In this case, as shown at the end of Appendix A, the conditional expectation for the forecast
becomes

λ(n, i) = λ(i). (14)

namely there is non dependency. In other words, the volatility forecasts for all time horizons
are given by the volatility as computed with the single EWMA,scaled by

√
∆T/δt.

Figure 1 shows the weightsλ(n, i) for an I-GARCH and a long memory process, in semi-
logarithmic scales. The black and blue dashed lines correspond to the I-GARCH process,
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with no dependency on the forecast horizon. The group of curved lines corresponds to the
long memory process, where the black line givesλ(i) (i.e. the one day forecast), and the
colored curves corresponding to the forecast horizonsn = 5, 21, 65 and 260 days. We see
clearly that with increasing forecast horizons, the weights decrease on the recent past and
increase on the distant past. This behavior is fairly intuitive, as a long term forecast should
use more information from the distant past, whereas a short term forecast is dominated by the
recent events.

The detailled empirical study shows that the autoregressive termµeff must be included in or-
der to construct a process that captures well the propertiesof the financial time series. Our
theoretical approach is to considerµeff as small, and treat it in perturbations. This introduces
corrections for the volatility forecast, as well as a non zero forecast̃r[∆T] for the return at the
risk horizon∆T. The analytical computations related toµeff are detailled in the appendix B.
The key point is that, because the process includes only linear and quadratic terms, we are able
to evaluate analytically the conditional expectations needed to compute return and volatility
forecasts.

2.3 The residuals

With the forecasts for the returñr[∆T](t) and volatility σ̃2[∆T](t) computed att, the basic
formula to evaluate market risk is

r[∆T](t) = r̃[∆T](t)+ γ[∆T]

√
σ̃2[∆T](t) ε(t). (15)

The residualε is a random variable with a given distributionp∆T(ε). The distribution is such
thatE[ε] = 0 andE[ε2] = 1. The scale factorγ[∆T] is a fixed function with a weak dependency
on ∆T given by eq. 17 below, and essentiallyγ[∆T] ≃ 1. On the left hand side,r[∆T](t) is a
random variable, dependent onε. From the returns distribution, computed for example with a
Monte Carlo simulation, the risk measures can be estimated,like VaR and expected shortfall.
The risk measures can also be computed analytically (for onetime series!), for example with
a normal distribution. In this formula, the forecasted return and volatility act respectively as
location and size factors. Therefore, the probability distribution of the returns,conditionalon
r̃ andσ̃, is identical to the probability distribution of the residuals. We are using the shorthand

for the volatility forecast̃σ =
{

σ̃2
}1/2

.

The most important part in this formula is the forecast for the volatility σ̃. This term should
capture the heteroscedasticity of the financial time series, so that the pdf of the residuals is
stationary. This is expressed by the fact thatp∆T(ε) depends on the risk horizon, but not on
t, and only the volatility forecast will make the risk larger in periods of high volatility. Thẽσ
term emphasizes the tight relation between volatility forecasts and risk evaluation.

The volatility forecast is itself a time series, with a non trivial distribution. Essentially, all
volatility forecasts are based on the (magnitude of the) past returns, and therefore, they will
share some properties withp(r). In particular, the volatility forecast has also a fat tail distribu-
tion (say similar to the|r| distribution). Because the above formula is essentiallyr = σ̃ ε and
all the terms are time series, theunconditionaldistribution of the returnsp(r) is different from
the distribution of the residualsp∆T(ε). Intuitively, because the distribution of the volatility
forecasts captures some of the fat tails, the distribution of the residuals should have less fat
tails than the distribution of the returns. The question is whether the volatility forecast captures
all the fat tails and the residuals have a Gaussian distribution, or whether part of the fat tails
for the returns originate in the residual distribution. We will investigate this question in sec. 14
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using empirical data. Let us emphasize again the important difference between the conditional
and unconditional distribution of the returns. The distribution specified in a risk methodology
is the distribution of the residualsp∆T(ε). It is identical to the conditional distribution of the
returns (up to shift and magnitude factors), but not to the unconditional distribution of the
returns (because of̃σ(t)).

The formula 15 is used to evaluate the forthcoming risk att. In order to establish and test a
risk methodology, historical data is used and the formula issolved forε, leading to

ε[∆T](t) =
r[∆T](t +∆T)− r̃[∆T](t)

γ[∆T]

√
σ̃2[∆T](t)

. (16)

On the right hand side, the returnr[∆T](t +∆T) corresponds to the historical return at the time
t +∆T, or to the realized return att. This formula is similar in structure to the “standardization”
of a time series by removing its sample mean and dividing by the sample standard deviation;
the key difference is that we use the respective forecasts att. The motivation is to discount
the realized return by the available information att in order to build a random variableε that
is well behaved, namely iid. The pdfp∆T(ε[∆T]) can be computed empirically, and compared
to different models forp∆T . Then, using an analytical model forp∆T , the VaRp[∆T] can be
computed, as well as other risk measures.

Notice that the formulas 15 and 16 are very similar to the basic one step return increment
r[δt] used in our process definition. The main difference is that the definitions 15 and 16 are
expressed for the risk horizon∆T instead ofδt.

The probability distributions of the residuals must be suchthatE
[

ε2[∆T]
]
= 1. On the other

hand, the volatility forecast̃σ is computed from the process equations in our approach, and
does not contains any free parameter. In order to be able to respect the condition〈ε2〉 = 1
when computed from empirical data according to the formula 16, a “scale factor” depending
on∆T has to be introduced. This is the role of the scale functionγ[∆T] given by

γ[∆T] = 1.06+0.008(ln(∆T/δt))2 . (17)

Its form and parameters has been established on a subset of 47time series corresponding to
fairly liquid assets (these time series were shorter than the ones used in both final data sets).
The form was found by plotting〈ε2[∆T]〉 as a function of∆T for each time series (and with
γ = 1), and finding an overall decent approximation. When used onthe final ICM and G10
data sets, no change were made as the initial formula works very well.

To summarize our approach, the goal is to obtain an iid randomvariableε at time horizon∆T.
For this purpose, we build the needed forecasts using a process set at the daily time stepδt.
These forecasts depend only on the process and have no additional parameters; they are used
to remove the predictable part of the mean and the variance ofthe price changes.

2.4 Annualization

Mean returns and volatilities have a scaling dependency with respect to∆T, namelyµeff ∼ ∆T
andσ ∼

√
∆T. As we want to study risk at different risk horizons, it is better to remove this

dependency. The common convention is to scale all quantities to a reference time horizon
of one year, a procedure called annualization. The typical numbers that one has in mind are
indeed annualized volatility, and for most (free floating) liquid assets it is in the range of 5 to
30% per year. For quantities computed at a scale∆T, the corresponding annualized quantities
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are

σa =

√
1 year

∆T
σ

ra =

√
1 year

∆T
r. (18)

µeff,a =
1 year

∆T
µeff.

The annualized quantities can be directly compared at various time horizons, as the lead-
ing random walk scaling has been discounted. For example, the forecast for the annualized

volatility has no leading scaling with
√

∆T/δt, but only the constant factor
√

1 year
δt . In the

following empirical sections, because we want to systematically compare results at different
time horizons, all the quantities are annualized, but thea subscript has been dropped.

3 The data sets

The empirical investigations are done using two data sets. First, the “ICM” (International Cap-
ital Market) data set is a fairly large ensemble of time series covering major asset classes and
world geographic areas. This set contains a total of 233 times series, divided into commodi-
ties (18), foreign exchange (44), stock indexes (52), stocks (14) from France and Switzerland,
CDS spreads (Credit Default Swap) on US firms (5), interest rates (100) with maturities at 1
day, 1 month, 1 year and 10 years. The length of the time seriesare of at least of 1200 days,
most of them between 2000 to 5000 days. The second set, calledG10, contains 58 time series
for the G10 countries, and covering commodities, FX, stock indexes and interest rates. Details
for these two sets are given in [Zumbach, 2006a].

In the scatter plots, the symbols are as follows: stock indexes: green square; FX: blue circle;
CDS: magenta triangle (pointing up); Commodity: black triangle pointing right; Stock: black
triangle pointing down; IR: essentially red with differentsymbols according to the maturities.
For the maturities, the symbols are as follows: 1 day: ’x’; 1 month: ’+’; 1 year: five points
star; 10 years: six points star. For the geographic locations, the colors are as follows: magenta
for USA and canada; pink for Australia and New Zealand; red otherwise.

4 Price mapping

The standard assumption in finance is to model thelogarithm of the pricex = ln(p) by a
random walk, possibly with a non trivial structure for the volatility, for example with an ARCH
process. Considering that the logarithm of the price is the “good” variable is rooted in the
economic invariance under the multiplication by a positivenumber of all the prices. In other
words, for a given currency, if all the prices are multipliedby the same constant, nothing
changes. After the transformationp → x = ln(p), the logarithmic price differences do not
depend on an overall price multiplication. The processes used in finance are build only on
the logarithmic price changesr, but not on the pricesp. As a result, the correlation between
price p and volatility is zero, in agreement with the empirical results. Otherwise, should
the volatility be computed from price differences (withoutlogarithms!), then there would be
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a positive correlation between prices and volatility because large prices lead to larger price
changes, and hence to larger volatility.

The situation is different for bonds and interest rates. These securities allow to trade the time
value of money and have boundaries on their possible values.For example, the value of a
bond must be between zero and its par value, or the interest rates must be positive. Because
there is no theoretical invariance argument, it is much lessclear which transformation leads to
the “good” variable that follows a random walk. In this case,one has to relies on empirical
investigations. Our criterion is as described in the previous paragraph, namely to minimize the
correlation between the prices (or the yields) and the volatility, with the volatility computed
with differences of the transformed variables. Similarly,we want also to minimize the corre-
lation between mapped price (or mapped yield) and volatility. The underlying idea is that the
volatility must depend only on differences, and not on the yield level (or on the mapped yield
level).

As a candidate for the “good” variable, the bond price itselfis inappropriate, because it must
obey two constraints, and because it has a strong dependencyon the time to maturity. The
interest ratey, or yield, for a given maturityδT is a better candidate, and must obey3 the single
constrainty[δT](t) ≥ 0. We have investigated empirically a few simple transformations for
y, for the interest rates in our test set. The transformationsarenone(x = y), log (x = ln(y)),
sqrt (x =

√
y) andlinLog (x = ln(y0+y)). The returnr are computed by differences ofx, and

the volatility is computed by a sum of returns squared over a time period∆T. Similarly, the
variablex or y is averaged over the same time interval∆T. Then, we compute the correlation
ρ(y,σ) between yieldy and volatility, and the correlationρ(x,σ) between mapped yieldx and
the volatility. Both correlations are computed for each yield time series, and the results are
displayed below in the form of a probability densityp(ρ) for the correlation (i.e. the empirical
probability in our test set).

The parameter∆T has the following influence on the estimation of the correlation: the number
of independent yields decreases as 1/∆T, but the variance of the volatility estimator decreases
as 1/

√
∆T. Essentially, with increasing∆T, the volatility is estimated more accurately, but the

number of independent yields decreases. Because of the difference of the exponents, it is better
to use a small∆T. This has been checked empirically, and the results are presented below for
∆T = 1 day (the results are similar for larger∆T). The correlationsρ(y,σ) or ρ(x,σ) show very
small differences, and the figures 2 and 3 are given for the mapped yieldx. For comparison,
the same computation is done for foreign exchanges and stockindexes, and shown on fig. 3.
In this case, the base variable is the pricep, with the transformationnone(x = p), and log
(x = ln(p)).

For the transformationnone, the interest ratey shows a positive yield-volatility dependency for
largey. On fig. 2, this appears as essentially positive correlations (red curve). This dependency
can be understood intuitively because large interest rateshave larger changes. This explanation
is validated by a more detailled investigation of the results, where large correlations are related
to large yields. This shows that the yield is not a “good” variable. A simple solution consist
in using a logarithmic transformation ln(y). For this log transformation, there is a (price-
volatility) dependency for small values ofy: this correlation originates in the boundaryy = 0
and in the finite tick size that leads to large relative changes for smally values. The “boundary
effect” leads to negative correlations, as shown by the bluecurve on fig. 2. Therefore, the
logarithm of the yield is also not a “good” variable.

Both explanations point to a transformation that is linear for smally and logarithmic for largey.
A simple transformation with these properties is ln(y0+y), wherey0 fixes the cross-over from

3The constrainty[δT](t) ≥ 0 can even be violated by minute amounts, as this occurred forthe Japanese Yen.
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Figure 2: Probability density for the correlation between mapped yield and volatility.
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linear to logarithmic. Computations for different valuesy0 show that a value aroundy0 ≃ 4%
leads to a minimal price-volatility dependency. The parametery0 is not critical as there is only
a weak dependency of the results with respect toy0. The corresponding probability density
for the correlation is plotted with the black curve, which isessentially symmetric around zero.
A more detailled investigation shows no particular dependency for large or small yields. This
shows that thelinLog transformation leads to a “good” variable.

A transformation with similar properties is the square rootx =
√

y. Statistically, its pdf does
not differ from thelinLog transformation, showing that it is also effective at neutralizing the
dependency between yield and volatility. Yet, we felt that there is no intuitive explanation for
why this particular form should be used, whereas the arguments given above for thelinLog
transformation make sense with respect to the market behavior.

Notice that the statistics for one time series are not very good because the interest rates have
a slow evolution. Even within a 15 years period, they tend to stay in a limited range, and
many currencies have had very low interest rates in the last decade. Added difficulties are the
high correlations between different maturities as well as the limited number of currencies with
free and liquid fixed income market. All these limitations preclude an accurate determination
of the optimal transformation. For the rest of this work, we use thelinLog transformation
x= ln(y0+y) for interest rates, withy0 = 4%. A value fory0 around a few percents is plausible,
and the final risk estimates are very weakly sensitive to thisvalues.

The comparison figure for the FX and stock indexes is also interesting. Thenonetransforma-
tion (i.e. computing the volatility with price differences!) shows clear positive correlations,
as expected. For the FX, thelog transformation makes symmetric the pdf for the correlations.
Yet, for the stock indexes with thelog transformation, the correlation probability is clearly
skewed on the negative side. This is related to the asymmetrybetween up and down moves,
where large negative moves (stock index crashes) are followed by high volatility periods. This
dependency leads to a negative correlation, as observed on the graph.

Finally, the modelization of interest rate processes is related to the above change of variable.
A simple one factor model for the short rate can be writen as

dy= (y0−y)
δt
τ

+σ s(y) dw.

The first term(y0−y) δt/τ introduces a mean reversion at a time horizonτ, the second term
introduces a random component through a Wiener processdw. Depending on the particular
functional form fors(y), various models can be writen. Standard choices ares(y) = 1 (Vasicek)
ands(y) =

√
y (Cox, Ingersoll and Ross). A change of variablex= x(y) can be chosen so that

the process is written as

dx= m(x)
δt
τ

+σ dw (19)

namely the random term appears as a simple additive component, but the drift factorm(y) is
more complex. This leads to a differential equation∂yx(y) = 1/s(y), which can be solved to
find the appropriate change of variables. For the Cox-Ingersoll-Ross model, the transformation
is given byx = 2

√
y. Therefore, the above analysis for the yield-volatility correlation shows

that thesqrt transformation that is implicit in the Cox-Ingersoll-Rossprocess is effective at
decoupling yield and volatility. The analysis also suggests building an interest rate model with
s(y) = y0+y, leading tox= ln(y0+y). This model will be as effective at decoupling yield and
volatility. This line of thought with variable changes suggests writing the mean reverting term
for x as a simple form (i.e.m(x) = x0−x), but with a more complex form for the equivalent
drift m(y) in the equation fory.
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For risk evaluations, say with Monte Carlo simulations, theyield processes is simulated. In our
framework, the simulations are done using eq. 19, andm(x)/τ should be estimated. The form
for m(x)/τ is set indirectly through the lagged correlations for the returns. Yet, the empirical
investigation in sec. 8 (page 29) shows a more complex situation than a simple one factor
model for interest rates. In particular,m(x)/τ is trend following, and a mean reversion shows
only for time horizons of the order of one year or above.

5 Probability distribution for the returns

The key concern for market risk evaluation is the probability distribution for large price
changes, namely the tails behavior ofp(r). Because the mean volatility of the various time
series can be very different, it is better to user ′ = r/stdDev(r) as the variable for such a study,
with

stdDev2(r) =
1
n ∑

t
r2(t) (20)

and wheren is the number of terms in the sum. Notice that this standardization of the returns
uses the full sample information. The tail behavior is conveniently studied by the empiri-
cal cumulative probability density cdf(r). For negative residuals, the tail corresponds to the
convergence of the cdf toward zero, whereas for positive residuals, the tail is given by the
convergence toward one. In order to have similar figures for both tails, we plot the cdf versus
−r ′ for the negative tail, and 1−cdf versusr ′ for the positive tail.

The resulting figures for the G10 data set are given in fig. 4 and5 for the negative and positive
tails respectively. Clearly, the distribution at one day iswell described by a distribution with
fat tails, but badly by a Gaussian. With increasing time horizons, we can observe the slow
convergence toward a Gaussian. Concurently, the sizes of the data samples diminish, and it
becomes increasingly difficult to make clear assertions about the tail behavior forp(r).

There is a common confusion in this field between the probability distribution of the returns
and of the residuals. Let us emphasize that our approach to risk is based on the residualsε,
and the important distribution for the risk methodology isp(ε). It is however interesting to
comparep(r) with p(ε), and we will return on this topic in sec. 14.

6 Lagged correlations for the volatilities

The dominant feature of financial time series is the heteroscedasticity, or volatility cluster-
ing. The clustering is quantified by the lagged correlation of some measures of volatility, and
this lagged correlation decays slowly. The non zero lagged correlation means that there is
information in the past about the future volatility, and that forecasts for the volatility can be
computed. It is therefore important to understand and quantify in details the available infor-
mation in order to build good forecastsσ̃. Indeed, volatility clustering and the related forecast
is at the core of our approach of risk measurement. Without volatility clustering, no volatility
forecast is possible, and the only possible approach to riskmanagement would be through an
unconditional return probability distribution.

In order to select the appropriate process that captures accurately the properties of the financial
data, the empirical volatility memory needs to be characterized in more details. This is done
typically by studying the lagged correlation of the absolute value of the daily return|r[δt]|,
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Figure 4: The cumulative probability density cdf(r) versus−r/stdDev(r) for the negative tails. The time series
are the G10 data set. The solid line corresponds to a Student distribution with 3 and 5 degrees of freedom
(rescaled to have a unit variance); the dashed line corresponds to a standard normal distribution.
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Figure 5: The cumulative probability density 1− cdf(r) versusr/stdDev(r) for the positive tails. The time
series are the G10 data set. The solid line corresponds to a Student distribution with 3 and 5 degrees of freedom
(rescaled to have a unit variance); the dashed line corresponds to a standard normal distribution.
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Figure 6: Lagged correlation for the 10 days realized volatility, and averaged over the G10 countries. The
parameters for the theoretical curves are as follows: log decay: ρ0 = 82%,τ0 = 4 years; power law:ρ0 = 110%,
ν = 0.3; exponential:ρ0 = 90%,τ0 = 65 days.

however such a study can be done with any measure of volatility, and/or more robust measures
of dependency. The difficult task is to pinpoint the behaviorfor large lags, as the size of
the independent sample is shrinking. In order to find the mostconvincing answer, we have
combined two improvements over the plain lagged correlation of the daily absolute return.

The first improvement is to select a better volatility estimator. There is a trade-off between
the variance of the volatility estimator, the size of the (independent) volatility sample used to
compute the correlation, and the range for the lags. The absolute value of the daily returns, or
one day volatility, is a very poor volatility estimator, butleads to the largest data sample and
range for the lags. The realized volatility for a few days is abetter volatility estimator, but the
independent sample and the lag range are smaller. In this trade-off, we found that the optimal
is between 5 days to 1 month realized volatility, and the figures below are presented for the 10
days realized volatility.

The second improvement is to pool together different time series. The error for the computed
correlation for one time series of 15 years can be estimated as follows. The memory for the
volatility has a slow decay, but an equivalent exponential decay could be around 3 months (see
fig. 6). The number of independent data points can be estimated byN = 180 months/3 months
= 60 points. The error on the correlation is of the order of 1/

√
N ∼ 8%. At a lag of one

year, the lagged correlations are between 5 to 30%. Clearly,the error due to the sample size
is large, and preclude to have a clear view for the memory decay. Using a robust correlation
estimator helps in reducing the prefactor for the statistical error. The only other way to reduce
the statistical error is to average the lagged correlationsover a set of time series (assuming a
similar decay). For this purpose, we have computed simple means, with equal weights, of the
lagged correlations for the different asset classes (FX, IR, stock indexes, ...).

On fig. 6, we plot the lagged correlation for the 10 days realized volatility, aggregated by asset
classes, for the G10 countries. Fig. 7 is the same graph, but averaged over all the time series in
the ICM data set. For this second graph, because of the equal weighting scheme, and because
of the respective number of time series in the G10 and ICM datasets, the largest contributions
originate in the non G10 countries. Similar results are obtained with other robust volatility
estimators and other correlation estimators. A good simpledescription of the data is given by
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Figure 7: Lagged correlation for the 10 days realized volatility, and averaged over the world ICM data set. The
parameters for the theoretical curves are as follows: log decay: ρ0 = 63%,τ0 = 3 years; power law:ρ0 = 70%,
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a log decay

ρτ = ρ0

(
1− ln(τ/δt)

ln(τ0/δt)

)
(21)

with τ0 of the order of 3 to 6 years andρ0 depending on the time series. This analytic form
seems to be valid up to 1 to 2 years, possibly with a faster decay for larger lags. The usual
analytical description for the lagged correlations is donewith a power law

ρτ = ρ0

(
δt
τ

)ν
. (22)

We find that this second form gives consistently an inferior description of the empirical data,
for all the volatility estimators and correlation estimators. A strong indication for the valid-
ity of the log decay is that the aggregation for different asset classes (i.e. with completely
unrelated time series) shows consistently that a log decay is superior to a power law. The
aggregated curve for the stock indexes is likely the best one, as each index is already an ag-
gregation over many stocks, and the individual indexes are fairly independent in the G10 set.
On the contrary, there are more redundant time series in the IR and FX sets (all the European
countries have similar behaviors). The results for most individual time series are also consis-
tent with a log decay, and inconsistent with a power law decay, albeit the noise is larger. For
example, on fig. 8 is displayed the lagged correlations for the stock indexes for the G10 coun-
tries. To summarize, we consistently find that the best description of the volatility memory
is given by a logarithmic decay, for time tags between a few days to one year. Moreover, the
decay rangeτ0 has a very similar valueτ0 ≃ 5 years for all time series. This suggest that a
similar mechanism creates this long memory, and that one decay factor can be used to model
all time series.

Notice that this analytical description of the data goes against the usual claim that the lagged
correlations for the volatility decays as a power law. Forν ln(τ/δt) ≪ 1, both analytical de-
scriptions are related by

ρ0

(
δt
τ

)ν
≃ ρ0 (1−ν ln(τ/δt)) . (23)

The relationship between the parameters isν = 1/ ln(τ0/δt), and withτ0 = 4 years we obtain
ν ≃ 0.14. This explains the consistent small values for the exponent ν reported from power
law estimates of empirical data. Yet, beware that on the graphs 6 to 9, the above approximation
is valid up to≃32 days. A better fit with a power law decay is obtained with larger exponents
(e.g. for the graphsν = 0.3), but the best value for the exponent is dependent of the selected
domain for the lags. For comparison purposes, we have also plotted on fig. 6 an exponential
decayρ0exp(−τ/τ0) (corresponding for example to the I-GARCH(1) and GARCH(1,1) pro-
cesses). The exponential decay is easily excluded as a good description of the empirical time
series.

The usual (Pearson) correlation is fragile with respect to large events, and therefore not the
most appropriate for variables with fat tails distributions. We have investigated two other ro-
bust measures of dependency, namely the Kendall’s Tauρτ andρSSD. The definitions for the
correlation estimators are given in Appendix C. The robust correlation based on the stan-
dardized sums and differencesρSSDproves to give a less noisy answers than the usual linear
correlation, and still with a decent computational time. The Kendall’s Tauρτ gives very sim-
ilar values compared toρSSD, but with a much longer computational time (it scales asO(n2)
instead ofO(n)). Using these robust estimators lead to the same conclusions as with the usual
correlation, namely a logarithmic decay is always a better description of the decay of the
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Figure 9: Lagged correlation, evaluated with theρSSDestimator, for the 10 days realized volatility, for a Long
Memory - Affine - Microscopic - ARCH process. The simulation length is of 1000 years. The parameters for the
theoretical curves are as follows: log decay:ρ0 = 57%,τ0 = 6 years; power law:ρ0 = 80%,ν = 0.45;.

lagged correlation. The major difference is that the empirical curves are less noisy, and the
parameter values for the analytic description are slightlydifferent.

This finding has strong implications on the choice of the volatility process. The memory
kernel, as specified by the weightswk, should be chosen so as to reproduce the empirical
memory. The lagged correlation for the LM-ARCH process cannot be computed analytically,
but can be estimated by Monte Carlo simulations (using the affine version of the process, see
[Zumbach, 2004]). For the simulation, the parameters for the process are choosen according
to the values found in the next section 7. Fig. 9 displays the lagged correlation for the 10
days volatility, for the long memory process using daily returns. The agreement is clearly
very good, showing that this process capture the correctly the decay of the volatility lagged
correlations.

Beyond the precise analytical description of the generic decay for the volatility lagged corre-
lation, the difference between a power law and logarithmic decay is quantitatively small on
the accessible range of lags. Using backtesting for the two long memory specifications shows
indeed very small differences. For the consistency of the methodology with the empirical
stylized fact, we decide to use a logaritmic decay for the process.

7 Volatility forecast

The volatility forecast is the single most important part ina risk methodology. With the pro-
cess set-up, the forecast depends only on the process parameters. These parameters are the
logarithmic decay factorτ0, the lower cut-offτ1, and the upper cut-offτmax = τkmax. A-priori
values for them could be as follows. The logarithmic decay factor τ0 has a value estimated
from the empirical lagged correlation of|r| or of the volatility; the estimates are in the range
3 to 6 years. The lower cut-offτ1 should be of the order of one to a few days: there are more
information in the most recent past, but a small lower cut-off puts strong weights on the few
last returns resulting in a noisy estimator. The upper cut-off τmax should be in the range of a
few months to a few years. The origin of the heteroscedasticity is the memory of the traders
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and the strategies they follow; the longest time horizon formarket participants are probably
of a few months to one year (likely pension funds and central banks). A direct estimate using
empirical data proves difficult because of the increasing noise for very large lags, yet most
lagged correlations for the volatility seems to decay faster than a logarithmic decay above one
year. These three values give a first plausible estimate for the parameters. Notice also the
advantage of our choice for the parameters, as we can have a fairly intuitive perception of
their meaning and respective values. We denote the three dimensional vector of parameters by
θ = (τ0,τ1,τmax).

The process allows us to compute a volatility forecast at horizon ∆T that should be compared
with the realized volatility. The realized volatility (or quadratic variation) is defined by

σ2
real = ∑

t+δt≤t ′≤t+∆T

r2[δt](t ′) (24)

The annualized volatility is obtained by multiplying by 1 year/∆T. The sum contains∆T/δt
terms, leading to a noisy estimator of the realized volatility for short risk horizons. This poor
realized volatility estimator for short risk horizon implies that the measures of quality for the
forecast (defined below) becomes worst for short horizons.

Straight forward measures of the forecast accuracy areL1 andL2 distances. In our context,
we want to compare forecasts for time series with very different volatility, and it is therefore
more appropriate to use relative measures of the forecast accuracy. To define the relative accu-
racy, we use the sample mean volatility as the reference forecast. This leads to the following
measures of distance

L1,rel =
〈|σ̃−σreal|〉
〈|〈σ〉−σreal|〉

(25)

L2
2,rel =

〈(σ̃−σreal)
2〉

〈
(√

〈(σ2〉−σreal

)2
〉

(26)

where〈·〉 denotes the sample average. With these normalizations, a perfect forecast has a
distance of zero to the realized value, and a forecast as goodas the sample mean has a distance
of 1.

The volatility forecast accuracies have been investigatedin the parameters space in order to
find a good valueθ⋆ for the parameters. The goal is to find one set of parameters that can
produce good forecasts for all assets and time horizons. Theresults are summarized in the
graphs 10, 11 and 12, showing one dimensional cuts along the parameter axis through the
point θ⋆. Good overall optimal parameter valuesθ⋆ are τ0 = 1560= 6 years,τ1 = 4 days
andτmax = 512 days. Fig. 10 shows the dependency on the logarithmic decay factor. The
horizontal axis gives the values for the logarithmic decay factorτ0, while the other parameters
are at theθ⋆ values. The vertical axis is the ratio

L2,rel(θ)/L2,rel(θ⋆). (27)

This quantity measures the forecast accuracy compared to the forecast using the reference
parametersθ⋆. The curves correspond to the different forecast horizons∆T; values below
1 indicate that the forecast can be improved by changing the parameter value compared to
θ⋆. The set of curves shows that less that 0.5% of the performance forecast can be gained by
optimizing the logarithmic decay factor as a function of theforecast horizon. This small gain
shows that the same parameter value forτ0 can be used for all time horizons.
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Figure 10: The relative volatility forecast performance asa function of the logarithmic decay factor, for various
forecast horizons. The curves are normalized to the reference pointθ⋆.
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Figure 11: The relative volatility forecast performance asa function of the lower cut-off, for various forecast
horizons. The curves are normalized to the reference pointθ⋆.
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Figure 12: The relative volatility forecast performance asa function of the upper cut-off, for various forecast
horizons. The curves are normalized to the reference pointθ⋆.

The same analysis is performed with respect to the lower and upper cut-offs, as shown on
fig. 11 and 12. The forecast performance has a similar sensitivity with respect to these two
parameters, and fine tuning these parameters leads to improvement of less than 0.5%.

As a comparison, the same computation is done for the RM1994 methodology. In this case,
the parameter space for the I-GARCH process is one dimensional and corresponds to the char-
acteristic time of the exponential. Fig. 13 displays the same set of curves as for the RM2006
methodology. Notice that the vertical scale is expanded by afactor 40 compared to the graphs
for RM2006. The reference pointθ⋆ is taken at 16 days, and corresponds to the usual value
µ= 0.94. This value is nearly optimal for forecast horizons up to 10 days. For longer horizons,
it is better to use larger characteristic times, and the optimal value increases with the forecast
horizon. Clearly, for longer horizons, the performance gain obtained by taking the optimal
parameter value can be quite large.

The figures 10 to 13 show the volatility performance relativeto the reference points. The
volatility performanceL2,rel(θ⋆) at the reference pointθ⋆, as a function of the forecast horizon,
is showed on fig. 14. Between two days and three months, the relative performance of the
volatility forecast is better than the in-sample mean. At shorter horizons, the forecast accuracy
decreases due to the poor estimator for the realized volatility. For example, at one day, the
realized volatility is computed with only one return, leading to a very large variance for the
realized volatility estimator. This is probably the originof the apparent lower performance at
short time horizons. Yet, going beyond this simple argumentwould require to measure the
realized volatility using high frequency data. Notice alsothat the forecast given by the long
memory process is consistently better than the I-GARCH process.

All the graphs are for theL2,rel measure of forecasting performance. Very similar results are
obtained for theL1,rel measure, possibly with a slightly different optimal pointθ⋆. As for the
precise measure of the forecast quality, this analysis depends on the set of time series. Clearly,
going beyond the broad picture would be overfitting the data sample. The important point is
that one set of parameters is able to deliver a good forecast for all time horizons and all time
series, and that the values for the parameters make intuitive sense.
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Figure 13: For the RM1994 methodology, the relative volatility forecast performance as a function of the EWMA
characteristic time, for different forecast horizons. Thecurves are normalized to the reference pointτ = 16 days.
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Figure 14: The volatility forecast performance as functionof the forecast horizon∆T (smaller values are better).
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Figure 15: The short term interest rates for USD (red curve; 1month government debt benchmark) and Euro
(blue curve; 1 month swap).

8 Lagged correlations for the returns

For a liquid and free floating asset, the lagged correlationsof the returns have to be zero (up
to statistical noises). If this is not the case, the correlations can be used to set a profitable
trading strategy, until the correlations disappear. This simple and powerfull argument is used
to neglect the return forecast in eq.15 or in the process equation 2.

They are however two points of concern with settingr̃ = 0 from the start. First, stocks and
stock indexes should earn in average the risk free rate of return, plus possibly a risk premium.
This indicates that for these time series, we should includea long term positive mean return,
or a long term lagged correlation. Second, short term interest rates are set by central banks,
namely they are not free floating. Their decisions are often quite predictable within a time
horizon of the order of one month. For example, the short terminterest rates for USD and Euro
are given on fig. 15: there are clear trends that can extend formore than a year. Clearly, these
time series are not pure random walks, and the distinctive trends correspond to correlations
between lagged returns. Therefore, the trading argument given in the previous paragraph
should be somewhat tonned down: the lagged correlations forthe returns must be small.

We apply the same technique that is used for the volatility tothe returns, namely study the
return lagged correlation in order to search for information in the past data, construct various
forecasts built on this information, and consider the impact of these forecasts on the risk evalu-
ation. The key difference is that the available informationto be extracted from the data is much
smaller, and therefore this study is much more difficult. To make a simple analogy, a Gaussian
random walk would be the zero-th order model for the price, adding the heteroscedasticity is
the first order correction, while the correlation for the returns is the second order correction.
As we will show in sec. 15.1, the larger contribution inducedby the lagged correlation of the
returns is through the correction to the volatility forecast (as derived in eq. 58). The return
forecast has a much smaller impact, mainly on the lagged correlation for the residuals.

In order to enhance the signal for the lagged correlation of the returns, the figures reported here
are for an equally weighted mean of the (robust) lagged correlation of various time series in the
G10 data set. Fig. 16 is for the one day returns: the lagged correlations are at the noise level.
The only noticeably feature concern interest rates, where the correlations are mostly positive
for lags larger than a few days. Fig. 17 is for the monthly returns: the lagged correlations
seem at the noise level for foreign exchanges and interest rates. Yet, the lagged correlations
are fairly large for interest rates, at a distance of 3 to 5σ from zero. For the usual linear
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Figure 16: The robust lagged correlationsρSSD, in %, of the daily returns in the G10 data set, averaged for each
asset classes. The error bars give the empirical standard deviation for the mean.
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Figure 17: The robust lagged correlationsρSSD, in %, of the monthly returns in the G10 data set, averaged for
each asset classes. The error bars give the empirical standard deviation for the mean. The x-axis is the relative
lag τr = τ/∆T (with τ the lag and∆T the return horizon). Forτr < 1, the returns overlap; atτr = 1 is the first
point without overlap for the variable.
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Figure 18: The lagged correlationsρ∆T , at lag∆T, in %, of the returnsr[∆T], in the G10 data set. The colors are
blue for FX, green for stock indexes, and red for IR.

correlation, the figures are similar, with the lagged correlations of the monthly returns for the
interest rates of the order of 12%. This is getting large!

The analytical computations of the corrections due to the return lagged correlations in the pro-
cess are detailled in appendix B, and the mechanism behind these larger correlations can be
understood from eq. 60. Beyond the analytical formula, the intuition is that the correlations
originate likely in the central bank decisions for the shortterm rates. Essentially, small but
positive one day correlations add up, creating larger correlations for longer time intervals. The
best summary of the effect is visualized by the “lag one” correlations, namely the correlation
betweenr[∆T](t) andr[∆T](t + ∆T), as a function of∆T. On fig. 18, the different behavior
of the IR is clearly visible, in particular the correlationsare essentiallypositivefor lags∆T
between 10 days and 3 months. This goes against a simple mean reversion term that leads to
negative lagged correlations. Another interesting observation is the sharply decreasing cor-
relations for the longest time intervals. This should be dueto the long term mean reversion
of the interest rates, and the figure is roughly consistent with a mean reversion time of the
order of one to a few years. Overall, this figure shows the complexity of the lagged correla-
tion of the returns for interest rates, and that different mechanisms take place at different time
horizons. Most of the existing data generating processes for IR use a simple mean reversion
term, and therefore are not able to capture the observed multiscales behaviors. The conclusion
of this analysis is that the lagged correlations of the returns cannot be neglected, but more
fundamental work would be needed to gain a deeper understanding and to build finer models.
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Figure 19: The density histogram for the correlationsρ andρSSD between the forecasted and realized returns.
The time series are the ICM data set.

9 Return forecast

To define relative distances for the return forecast, we use azero forecast as benchmark. This
choice leads to the definitions

L1,rel =
〈|r̃ − r real|〉
〈|r real|〉

(28)

L2
2,rel =

〈(r̃ − r real)
2〉

〈r2
real〉

(29)

As already discussed for the definition of the residuals, therealized return at timet is the
historical return at timet + ∆T. With these choices,Lrel = 0 means a perfect forecast and
Lrel = 1 is a forecast as good as ˜r = 0.

TheL2,rel is related to the linear correlation (up to factors〈r̃〉 and〈r real〉 that are neglected): by
expanding the square and denoting byp = 〈r̃2〉/〈r2

real〉, the optimal value forp is p = ρ. For
this optimal value, we have the relationL2

2,rel = 1−ρ2; for example a 20% correlation implies
L2,rel = 0.98, namely a small departure from 1.

Other measures of quality are the correlations between forecasted and realized returns, com-
puted either with a simple linear correlationρ or the robust correlationsρτ or ρSSD. We tried
many possibilities for the forecast, but none proved clearly superior to the others. Often, some
measures of quality can be improved but at the expense of other measures of quality. Af-
ter testing many variations on the return forecasting formula, including the analysis per asset
types (IR, FX, Index, etc...), we set on the one given at the end of appendix B.

Fig. 19 gives the correlations between forecasted and realized returns. The asymmetry on the
positive side indicates that we are clearly capturing some information in the forecast. Yet, the
relative distances plotted on fig. 20 show that in the majority of the cases, we do worst than a
nil forecast ˜r = 0.
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Figure 20: The density histogram for the relative distancesL1,rel andL2,rel between the forecasted and realized
returns. The time series are the ICM data set.
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Figure 21: The lagged correlation for the daily absolute returns|r[δt]|, for the G10 data set.
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Figure 22: The lagged correlation for the daily absolute residuals|ε[δt]|, for the G10 data set.
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Figure 23: The “lag one” correlation for the absolute residuals|ε[∆T]| (vertical axis) versus the “lag one” corre-
lation for the absolute returns|r[∆T]| (horizontal axis). One point corresponds to one time seriesin the ICM data
set. Each panel corresponds to one risk horizon∆T.

10 Lagged correlations for absolute residuals |ε|

In empirical financial time series, the largest deviations from a simple random walk is due to
the heteroskedasticity. This motivates the present approach to risk, and in particular the key
definitions 15 and 16 used to discount the expected volatility in the forthcoming risk horizon
period. The effectiveness of the approach can be observed directly by comparing fig. 21 and
22. They show respectively the lagged correlations for the daily absolute returns and daily
absolute residuals, for all the time series in the G10 data set. On fig. 21, the slow decay of the
volatility memory is very clear, as well as the difference incorrelation levels between different
asset classes like equity indexes (green) or interest rates(red). The same computation but for
the residuals shows essentially no remaining lagged correlations, as is visible on fig. 22. At
closer inspection, one may notice two features. First, for afew interest rates, there is a monthly
seasonality due to central bank decisions. This is visible only for short maturity rates (daily
(x) and monthly (+)), at lags around 22, 44 and 65 business days. Second, at a lag of one day,
there are small remaining correlations, particularly for interest rates.
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Figure 24: The “lag one” correlation for the residualsε[∆T] (vertical axis) versus the “lag one” correlation for
the returnsr[∆T] (horizontal axis). One point corresponds to one time seriesin the ICM data set. Each panel
corresponds to one risk horizon∆T.

This last observation prompted us to study in more details the “lag one” correlations, namely
the lagged correlations of the returns and residuals at riskhorizon∆T, at a lag of one risk
horizon or∆T days. Figure 23 shows the “lag one” correlations for the absolute residuals
versus the “lag one” correlations for the absolute returns.A perfect risk methodology (applied
on a infinitely long data set) should show points only along the horizontal axis, correspond-
ing to non zero correlations for the returns but zero correlations for the residuals. A good
risk methodology would show points in the east and west sectors, corresponding to smaller
correlations for the residuals than for the returns. The figures show that up to a month, the
heteroskedasticity is well discounted by the risk framework. Above one month, the efficiency
of the volatility discounting decreases, but the statistical noise increases, so that it is difficult
to draw strong conclusions.
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11 Lagged correlations for the residuals ε

The lagged correlations for the returns has been investigated in sec. 8, with the important
outcome that correlations at intermediate time horizons cannot be neglected (see fig. 18). The
way to introduce return correlations in our process framework is straightforward, as detailled
in appendix. B. Fig. 24 shows the “lag one” correlations for the residuals versus the “lag one”
correlations for the returns. The improvements at risk horizons up to one week are very clear,
but disappear quickly with longer risk horizons. The mostlynegative lagged correlations at∆T
= 1 year for interest rate (i.e. the long term mean reversion)is also very clear. Despite the poor
performance of the return forecasts, the backtesting of theRM2006 methodology shows that
it increases the performance measured by the relative exceedance fractionδ(z) (see sec. 15).

12 Variance for the residuals

As discussed in sec. 2.3, the probability distribution of the residuals is such thatE[ε2] = 1.
This condition fixes the scale of the distribution, and it becomes〈ε2〉 = 1 on empirical data. It
is very important for a risk methodology to follow this scalecondition. Systematic deviations
from the equality correspond to systematic over or under estimation of the risks. Indeed, these
deviations are the factors that limit most the accuracy of a risk methodology. For〈ε2〉 >
1, the relative exceedance fractionδ(z) used in back testing (see [Zumbach, 2006a]) shows
systematic deviations from zero with a shape correspondingto a too large variance. Intuitively,
a too large forecasted variance leads to a too large forecasted risk, and the scalar error measures
like dp grow. Therefore, it is important to correct the systematic factors affecting the variance.

Beyond the long memory for the volatility and the Student distribution for the residuals, the
RM2006 methodology includes two terms directly relevant for the scale condition. The first
one corrects for the non zero lagged correlations for the returns and is given by eq. 59. The
second term is theγ[∆T] term included in the definition of the residuals and given in eq. 17.
Because the volatility forecast is completely specified by the process, this term is a free ad-
justable function used to enforce the scale condition of theresiduals.

A methodology including only a long memory process and Student distribution for the resid-
uals is used for computing fig. 25 (i.e. none of the corrections above are included). With
increasing risk horizons∆T, the foreign exchanges (blue) are doing well, the stock indexes
(green) show a systematic upward trend, but the interest rates (red) are quite scattered. More-
over, the quantitative deviations from 1 are quite large, leading to substantial misestimates of
the risks.

The bulk of the deviations are due to correlations between the returns. Positive lagged correla-
tions between the returns lead to larger volatilities at longer time horizons, as is clearly visible
for many interest rates. The correction 59 derived from the process equations in appendix B
leads to a better situation, as shown in fig. 26. Yet, there is asystematic upward trend with
increasing risk horizons, as is clearly visible by the deviation from the horizontal black line.
The role of the scale factor correctionγ[∆T] consist in absorbing this systematic deviation. A
fit was done on the mean of the standard deviations, but on a smaller and shorter subset of
the G10 data. This leads to formula 17, which proves to work well enough on the larger data
sets. The correction can be seen at work on fig. 27 for the ICM data set, where no systematic
deviation on the vertical axis can be observed.

The final results with both corrections included are shown infig. 28 for the ICM data set.
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Figure 25: The standard deviations of the residualsε[∆T] versus∆T, for the G10 data set, without corrections
for the lagged correlation (eq. 59 on the volatility) and without scale factorγ[∆T]. The horizontal black line is a
guide for the eyes sets at 1.
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Figure 26: The standard deviations of the residualsε[∆T] versus∆T, for the G10 data set, without scale factor
γ[∆T].
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Figure 27: The standard deviations of the residualsε[∆T] versus∆T, for the G10 data set. Both corrections are
included.
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Figure 28: The standard deviation for the residualsε[∆T] (vertical axis) versus the standard deviation for the
returnsr[∆T] (horizontal axis), in log-log scales. One point corresponds to one time series in the ICM data set.
Each panel corresponds to one risk horizon∆T.
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Figure 29: The mean for the residualsε[∆T] (vertical axis) versus the mean for the returnsr[∆T] (horizontal
axis). One point corresponds to one time series in the ICM data set. Each panel corresponds to one risk horizon
∆T, with the graph limits scaled by

√
∆T.

The standard deviations for the returns are reported on the horizontal axis, while the standard
deviations of the residuals are given on the vertical axis. The difference of volatility between
the broad asset classes is clearly visible, for example stock indexes (green) are more volatile
that interest rates (red). The standard deviations for the residuals are clearly clustered around
1, with obviously larger deviations for larger risk horizons ∆T. The clear outliers correspond
to the foreign exchanges (blue circle) for Turkey, Brazil, Kazakhstan, Hong Kong Dollard and
Philippines. All these currencies were at some point strongly regulated by central banks, and
have experienced sudden and disruptive events. Clearly, any random walk model performs
badly on such time series.

13 Mean for the residuals

The same computations but for the mean are reported on fig. 29.In this case, we want to check
that〈ε〉 = 0. Most interest rates went down during the last decade, resulting in negative mean

39



values for the corresponding returns. On the other hand, stocks and stock indexes raise in
the analysis period, resulting in mostly positive mean values for the returns. This systematic
difference leads to the separation along the horizontal direction. There is no separation in
the vertical direction except at the longest risk horizons,showing the effectiveness of the
methodology in removing the means for the residuals. Without corrections for the short term
correlations and the long term mean returns, the means essentially fall on a straight line, with
the same segregation between asset classes for the mean of the returns and the residuals.

14 Probability distribution for the residuals

A key ingredient in a risk methodology is the probability density p∆T(ε) for the residuals,
and in particular, the tail behavior corresponding to largeevents. This is conveniently studied
by the empirical cumulative probability density cdf(ε). For negative residuals, the tail corre-
sponds to the convergence of the cdf toward zero, whereas forpositive residuals, the tail is
given by the convergence toward one. In order to have similarfigures for both tails, we use
the same mapping as in sec. 5.

The resulting figures for the G10 data set are given in fig. 30 and 31 for the negative and
positive tails respectively. The salient feature of these graphs is the very good data colapse
that the RM2006 methodology gives. This shows that one analytical form for the residual pdf
should be enough to characterize all assets. The single red curve that departs from the others
corresponds to the Euro swap rate at one day. A close examination of the raw time series
shows frequent changes in the 0.5% to 1% range, probably due to competing data source and
a less liquid market. These frequent large changes induce a lack of small changes, visible for
smallε on the graphs.

At a one day risk horizon, the Gaussian distribution can be easily excluded as it clearly misses
the fat tails of the empirical data. On the other hand, a Student distribution with 5 degrees of
freedom provides for a good global description of the cdf, including the tails. Changing the
number of degrees of freedomν for the Student distribution shows thatν = 3 gives clearly too
much tails whereasν = 8 gives not enough tails. These rough bounds for the tail exponent are
confirmed in the section 15.3 on backtesting.

With longer risk horizons, the amounts of data in the tails diminish, and it becomes increas-
ingly difficult to make a clear distinction between different analytical descriptions. At 3
months and above, it is not possible to differentiate between the Student withν = 5 and a
Gaussian. Up to one month, the Student with a fixed number of degrees of freedomν = 5
seems to provide for a good description of the residual pdf. One possibility to improve the
description of the empirical pdf is to include a weak dependency with respect to∆T in ν.
Notice that we cannot use an analytical hint forν(∆T), as there is no simple aggregation
property for the residuals. Instead, we use a Monte carlo simulation for a ARCH process,
sampled daily, and with a simulation length of 1460 years. The process is a market com-
ponent model [Zumbach and Lynch, 2001, Lynch and Zumbach, 2003], with intra-day, daily,
weekly and montly time horizons. This process is probably the best available model today in
term of replicating the observed statistical properties ofthe empirical data. The parameters
are estimated on USD/CHF, but parameters for other curency pairs are similar. The process is
simulated with a time increment of 3 minutes, and the prices for the residual computations are
taken daily. The resulting residual distributions are shown on fig. 32, together with the empir-
ical cdf for the six foreign exchange rates in the G10 data set. At a risk horizon of one day,
the tail for the process is well described by a Student distribution withν = 7, and this agree
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Figure 30: The cumulative probability density cdf(ε) versus−ε for the negative tails. The time series are the
G10 data set. The solid line corresponds to a Student distribution with 5 degrees of freedom (rescaled to have a
unit variance); the dashed line corresponds to a standard normal distribution.
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Figure 31: The cumulative probability density 1− cdf(ε) versusε for the positive tails. The time series are the
G10 data set. The solid line corresponds to a Student distribution with 5 degrees of freedom (rescaled to have a
unit variance); the dashed line corresponds to a standard normal distribution.
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Figure 32: The cumulative probability density versus the residuals for a market component ARCH process (red
triangle) and the six foreign exchange rates (blue circle) in the G10 data set. Both tails are plotted, with the
mapping used in fig. 30 and 31. The dashed curve corresponds toa Gaussian cdf, the two continuous lines to
Student distributions.
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Figure 33: The cdf asymmetry for the stock indexes in the G10 data set.

with the empirical distribution for the FX rates (although their dispersion is fairly large). This
tail estimate is slightly thinner than theν = 5 estimate made on the ICM data set, likely due to
the large liquidity and absence of regulations for the majorFX rates. At longer risk horizons,
the graphs include two Student distributions withν = 7 andν = 7+ ln(∆T) (and a Gaussian
plotted with a dashed line). Even with such a long and clean Monte Carlo data set, it is not
clear what is the best description of the residual pdf for long risk horizons. With the length of
the empirical time series we use, there is no advantage in adding one more parameter in the
empirical description of the residual pdf. As there is no clear benefit in using a more complex
description with respect to∆T, we decide to keep a fixed number of degrees of freedomν = 5,
independent of∆T.

The first direct comparison between figures 30 and 31 shows no obvious asymmetry between
the tails. At closer inspection, small but clear differences can be observed for stock indexes.
The pdf asymmetry is measured by

(1−cdf(ε))−cdf(−ε). (30)

This quantity is plotted for the stock indexes in the G10 dataset in fig. 33. The systematic
deviations from zero show that stock indexes experience frequent small increases (gains) and
infrequent large decreases (losses). The difference between large and small is given essentially
by the current forecast for the volatility, namely byε ≃ 1. This same behavior is observed
for individual stocks, but no systematic asymmetry is observed for the other asset classes.
Although clear, the asymmetry is quantitatively small: forε = ±1, the cdf is of the order of
0.2 and the asymmetry of the order of 0.01 to 0.02.

Because the asymmetries are small and observed only for stocks and stock indexes, we de-
cide to neglect them in the analytical description of the residual distribution. This deci-
sion simplifies considerably the parameters evaluation of the residuals pdf. In principle,
univariate and multivariate generalized hyperbolic distributions can be constructed (see e.g.
[McNeil et al., 2005] and references therein). This family can accommodate asymmetric dis-
tributions, however with the drawback that the number of parameters are at least proportional
to the number of assets (depending on the simplifying assumptions). More work is needed to
find an overal description depending only on the asset classes, with one asymmetry parameter
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for stocks and stock indexes and symmetric distributions otherwise. We leave this topic for
further research, as it involves a multivariate analysis ofthe residual pdf.

The comparison betweenp(r/stdDev(r)) (fig. 4 and 5) andp(ε) (fig. 30 and 31) shows no
important difference. The tails of the residuals are slightly thinner at one day, but seem more
persistent for increasing∆T. This shows that the volatility forecast (used to derive theresiduals
from the returns) captures part of the large events. The curve collapse is also slightly better for
the residuals, mainly in the core of distribution. Yet, a keydistinction between the figures is
that the returns are standardized using the full sample standard deviation, whereas the residuals
ε(t) are computed only using information up tot. This key difference makes the residuals fit
to use in a day-to-day procedure, whereas the normalizationof the return using the standard
deviation of a sample up tot would give worse results.

15 Backtesting

The analysis so far concerns the various pieces that enter into the new methodology. The
strategy was to isolate as much as possible the various components, and to test and justify
them. Yet, the final methodology contains all the parts that interact non linearly, essentially
due to the definition 16 of the residual. Moreover, the real test for a risk methodology is
how it performs with respect to risk evaluations! The goal ofthis section is to analyse the
performance of the methodology, to understand where the improvements originate from, and
to compare with one well established methodology.

The backtesting framework follows [Zumbach, 2006a] and is based on the probtiles corre-
sponding to the residuals. The main analysis tool is the relative exceedance fractionδ(z)
that shows the difference between the actual and expected exceedances fraction, for a given
probtile. Then, convenient norms are set on this function, with the property that lower values
correspond to better performances, and with an emphasize onthe tails that can be chosen.
We use thed0 and d32 norms as measures of performance, withd0 measuring the overall
exceedance difference andd32 capturing the exceedance differences in the far tails. Simi-
larly, the lagged correlations are computed from the probtiles. The reader should consult
[Zumbach, 2006a] for the details of the backtesting framework, as well as for a systematic
comparison between various risk methodologies.

In order to give a scale for the performance measures, we include two benchmark method-
ologies in the figures below. One benchmark is the straight forward RiskMetrics exponential
moving average methodology, with a decay factorλ = 0.97. The corresponding curves are
labelled “RM1994097” on the graphs. Another benchmark is the “long memory + Student”
which includes a volatility forecast derived from a processwith long memory as in appendix
A, and a Student distribution for the residuals. No other contribution is included, leading to a
simple extension of the RM1994 methodology. This benchmarkis labeled “LMPlusStudent”.
The other methodologies correspond to the full RM2006 methodology, but with one of its
components removed. This allows us to measure the impact of each contribution in the final
risk estimates. The three subsections below present the impact on the RM2006 methodology
of the different terms for the return forecasts, for the volatility forecasts, and for the residual
pdf. A fourth subsection compares the overall impact of the main ingredients used in the final
methodology.
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Figure 34: The aggregated error measured0 (computed with a geometric mean), between one day and one year,
for the ICM data set, and for various return forecasts.
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Figure 35: As for fig. 34, but ford32.
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Figure 36: The aggregated lagged correlation of the probtiles (computed with an arithmetic mean), between one
day and one year, for the ICM data set, and for various return forecasts.
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Figure 37: The aggregated error measured32 (computed with a geometric mean), between one day and one year,
for the ICM data set, and with various volatility forecasts.

15.1 Backtesting the return forecasts

The influence of the return forecasts can be assessed on fig. 34, 35 and 36. Fig. 34 shows
the impact of the return forecasts on the overall exceedancefraction. Clearly, the long term
drift is a key component (as removing it decreases substantially the performances). Fig. 35
shows an error measure focused on the far tails for the same methodologies. In this case, the
story is quite different, as the return forecasts does not contribute at all to the performances.
This can be easily understood, as large events are much larger than the forecasted returns. As
other performance measuresdp are selected, the impact of the mean drift decreases gradually
asp increases. Therefore, including the drift ensures optimalperformances at all risk levels.
Another measure of performance is given by the lagged correlation of the probtiles, measuring
the tendency of events to cluster. Fig. 36 shows that the key contribution is given by the return
forecast originating in the lagged correlations of the returns.

The final picture about the return forecasts is that they improve the methodology, but the
different components (lagged correlation or long term drift) matter for different measures of
performances. In order to have optimal performances with respect to all criteria, both terms
for the return forecasts should be included.

15.2 Backtesting the volatility forecasts

The volatility forecast is a very important part of a risk methodology as it should discount
efficiently the heteroskedasticity. The figure 37 analyzes the contributions of the terms that in-
fluence the volatility forecasts. For the exceedance differences in the tails, as measured byd32,
the key contribution is the scale factorγ[∆T]. It shows that it is very important quantitatively
to follow the size conditionE

[
ε2
]
= 1.

15.3 Backtesting the residuals pdf

The influence of the probability distributionp(ε) of the residuals can be seen on fig. 38. The
RM2006 methodology, but with a Gaussian distribution, is labeled “RM2006nuInfty” (dashed
black line). Clearly, a Student distribution improves the performances, but the sensitivity with
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Figure 38: The aggregated error measured32 (computed with a geometric mean), between one day and one year,
for the ICM data set, and for various residual distributions.

respect to the number of degrees of freedomν is very weak in the region 4.5 ≤ ν ≤ 8. The
measures for the correlations of the probtiles and the correlation of the absolute probtiles show
a very weak dependency of the residual pdf, for all distributions. This shows that it is important
to use a distribution with fat tails, but the final methodology is weakly sensitive to the details
of the distribution.

15.4 Backtesting the key components of the methodology

As a quick summary, the RM2006 methodology is based on an ARCHprocess as a model for
the data generating process. The key components for the process and risk methodology are
long memory for the volatility, correction for the scale of the residual (i.e.γ[∆T]), Student
distribution for residuals, and corrections for the laggedcorrelations between returns. This
contrasts with the standard RM1994 methodology, based on anexponential memory, no cor-
rection for the residuals scale, Gaussian distribution, and no auto-correlations between returns.
Figure 39 shows the contribution of the pieces used to construct the RM2006 methodology.
The labels correspond to the following risk methodologies,adding successively the differ-
ent components: LMPlusGaussian: long memory + Gaussian residues; LMPlusStudent: long
memory + Student residues; LMPlusStudentPlusGamma: long memory + Student residues
+ scale correction; RM2006: long memory + Student residues +scale correction + lagged
correlations corrections. We see that, depending on the error measure, each part contributes
to the improved performance. In particular, the lagged correlation corrections is an important
component.

16 Conclusion

We started this work with two simple ideas. First, a process should be used to compute fore-
casts in order to be able to reach long risk horizons. Second,we should use a long memory
process and a Student distribution for the residuals, according to the recent progresses in fi-
nancial time series modelization. These two ideas correspond to the computations given in
appendix A. This improves the performances with respect to the existing methodologies, but
the gains can be disappointingly small according to some error measures, for exampled0 (see
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Figure 39: The main aggregated error measures, between one day and one year, for the ICM data set. The
methodologies incorporate successively the main ingredients of the RM2006 methodology.

fig.35 and fig.39). Although these basic ideas are good, they are not good enough to lead to a
breakthrough.

The key to understand the limitation of this simple extension of the standard methodology is
the weak correlations between lagged returns. Following the textbook argument, these cor-
relations should be very small otherwise they are arbitrageaway. Indeed, our computations
of the lagged correlations for the daily returns is in agreement with this idea. Possibly, rig-
orous testing of the null hypothesis of zero correlations can be rejected, but the correlations
are at the noise level (see the graph 16) and the statistical machinery of hypothesis testing
should be brought in. If these correlations are nill, then the best return forecast is also zero.
However, there are other better signatures for these correlations: lagged correlations of returns
at longer time horizons (e.g. monthly in fig. 17) and the standard deviation of the (uncor-
rected) residuals (see fig. 25). The inclusion of lagged correlations between the returns in
the process equations is straight forward, leading to the analytical computations detailled in
appendix B. The inclusion of the resulting terms substantially improves the performance of
the risk methodology. Therefore, the new RM2006 methodology can be summarized as based
on aARCH-like processwith long memory+ Student distribution+ residuals scale correction
+ lagged correlations between returns. All the ingredients contribute to the performances,
albeit possibly at different risk horizons or according to different performance measures. At
the end, the new RM2006 is clearly a more complicated methodology than the simple expo-
nential moving average of RM1994. This is the price to pay forthe increased accuracies and
the possibility to reach long risk horizons.

This paper is devoted to the construction of the RM2006 methodology. The approach consist
is separating as much as possible the different parts, and tojustify and test them separately. At
the very end, the influence of the various parts are quantifiedusing the backtesting methodol-
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ogy. Intentionally, we have not included a backtesting comparison with the existing method-
ology. The opposite approach is taken in the companion paper[Zumbach, 2006a] where many
methodologies are compared, but treated as black boxes. In one sentence, the key result of the
systematic backtesting comparison is that the RM2006 methodology improves the risk mea-
sures by a factor 1.5 to 3, for all risk measures considered, and for all risk horizons. This is a
large gain, which allows to have better risk estimates at short risk horizons and to be able to
compute meaningful figures at long risk horizons.

It is interesting to reflect on the “Amendment to the Capital Accord to incorporate market
risks” [BIS, 1992] in view of our understanding of financial time series and risk methodolo-
gies. The particular point in case is given in section B4, item d (page 40). This point reads:

The choice ofhistorical observation period(sample period) for calculating
value-at-risk will be constrained to a minimum length of oneyear. For banks that
use a weighting scheme or other methods for the historical observation period, the
“effective” observation period must be at least one year (that is, the weighted aver-
age time lag of the individual observations cannot be less than 6 months).

This last sentence can be translated in the condition

m1(n) = ∑
i≥0

λ(n, i) i ≥ 125 day ∀n (31)

wherem1 stands for the first moment, andn is the risk horizon∆T expressed in day. With
an exponential weighting scheme with characteristic timeτ, as for the RM1994 methodology,
the first moment of the weight ism1 = τ. With the standard accepted valueµ = 0.94, this
corresponds to 16 business days. Clearly, this value is veryfar to meet the BIS criterion. For
the RM2006 methodology, a few values arem1(1) = 44 days,m1(21) = 61 days andm1(260)
= 100 days; none of them meet the BIS criterion. Methodologies that fullfil this BIS criterion
are the Equal weight and the historical methodologies. Yet,they put too much weights on the
distant past, leading to a sub-optimal discounting of the volatility clusters [Zumbach, 2006a].
Together, this shows that this BIS condition is too stringent for an optimal risk evaluation.

As a direction for further works, a conceptually clean univariate framework as this one should
help progressing in the more complex multivariate risk analysis. This contribution uses only
a univariate analysis, eventhough many time series are usedfor the empirical analysis. The
extension of the current analytical framework to multivariate processes is natural, as the equa-
tions involve only linear and quadratic terms. Yet, the multivariate empirical performances
should be investigated in details. Intuitively, the multi-variate correlations should be better es-
timated with a long memory kernel, as more returns are included in the computations. Going
beyond this argument requires substantial work that we leave for further research.
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A Computation of the volatility forecast from the process equations

In [Zumbach, 2004], the volatility forecast for a slightly more general class of processes is
given. The process we are using is called in this reference “Long Memory Microscopic Linear
ARCH” process, or LM-Mic-Lin-ARCH. For completeness, we give here the derivation of the
volatility forecast for this particular long memory process.

Using the process equations for the LM-Mic-Lin-ARCH process 5 and 6, the conditional ex-
pectations are given by the recursive equations:

E
[

σ2
k(t + jδt) | Ω(t)

]
= µkE

[
σ2

k(t +( j −1)δt) | Ω(t)
]

(32)

+(1−µk)E
[

σ2
eff(t +( j −1)δt) | Ω(t)

]

E
[

σ2
eff(t + jδt) | Ω(t)

]
= ∑

k

wkE
[

σ2
k(t + jδt) | Ω(t)

]
(33)

for j ≥ 1. Introducing the new variables

δk( j) = E
[

σ2
k(t + jδt) | Ω(t)

]
(34)

γ( j) = E
[

σ2
eff(t + jδt) | Ω(t)

]
,

the conditional average equations are reduced to

δk( j) = µkδk( j −1)+(1−µk)γ( j −1) (35)

γ( j) = ~w′ ·~δ( j)

where~w is the vector of weightswk, and similarly for~δ and~µ. We can introduce the diagonal
matrix Mk,k′ = δk,k′ µk, with δk,k′ the Kronecker symbol (δk,k′ = 1 if k = k′, zero otherwise).
Both equations 35 can be combined

~δ( j) =
{

M +(~1−~µ)~w′
}
~δ( j −1) (36)

where~1 denotes the constant vector~1k = 1. This equation can be iteratedj times

~δ( j) =
{

M +(~1−~µ)~w′
} j

~δ(0) (37)

and~δ(0) is in the information set. This expression relatesE
[

σ2
k | Ω(t)

]
linearly to theσ2

k(t).
For γ, the Eq. 35 can be expressed as

γ( j) = ~w′( j) ·~δ(0) (38)

with the coefficientswk( j) given by the recursive equation

~w′( j) = ~w′( j −1)
{

M +(~1−~µ)~w′(0)
}

(39)

~w(0) = ~w.

Therefore, the coefficients~w( j) can be evaluateda priori, and the forecast for the effective
volatility computed by a simple scalar product. Using the property∑k wk = 1 and the above
definitions, it is easy to show that

kmax

∑
k=1

wk( j) = 1 for j ≥ 0. (40)

51



We can now express the above forecast equations in the form 3 and 12. The iterative equa-
tion for σ2

k can be unwinded in order to express the volatility with the lagged returns and
exponential weights

σ2
k(t) = (1−µk)

∞

∑
i=0

µi
k r2(t− iδt) (41)

In practice, the sum over the lags needs be cut-off at someimax, and the formula becomes

σ2
k(t) =

imax

∑
i=0

1−µk

1−µimax
k

µi
k r2(t− iδt) (42)

This form is introduced in the definition 6 forσ2
eff to obtain the equation 3 with the weights

λ(i) =
kmax

∑
k=1

wk
1−µk

1−µimax
k

µi
k (43)

As the process is defined with the constraint∑kmax
k=1 wk = 1, the coefficientsλ(i) obey

imax

∑
i=0

λ(i) = 1. (44)

The desired volatility forecast is

σ̃2[∆T](t) = E
[

r2[∆T](t +∆T) | Ω(t)
]
=

n−1

∑
j=0

E
[

σ2
eff(t + jδt) | Ω(t)

]
(45)

where the cross term in the expansion ofr2[∆T] vanishes because the autoregressive term
µeff(t) is set to zero. The same substitution as in the forecast equations above leads to eq. 12
with

λ(n, i) =
kmax

∑
k=1

1
n

n−1

∑
j=0

wk( j)
1−µk

1−µimax
k

µi
k (46)

with wk( j) given by the iterative equation 39. The iterative equation and forecast coefficients
can be evaluated numerically very easily. Using the property ∑kwk( j) = 1, we obtain

imax

∑
i=0

λ(n, i) = 1 for n≥ 0. (47)

When only one componentkmax = 1 is taken in the LM-ARCH process, the equations are
reduced to an I-GARCH process. The coefficientswk are degenerate tow = 1. The equation
39 becomesw( j +1) = w( j), and the solution isw( j) = 1. Inserting in eq. 46, we obtain

λ(n, i) =
1−µ

1−µimax
µi = λ(i). (48)

Therefore, for the I-GARCH process, there is no dependency on n in the forecast coefficients
λ. This shows that the RiskMetrics EWMA formulation corresponds exactly to use an I-
GARCH process. In this sense, our new formulation using processes is a natural extension of
the existing methodology.
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Notice that the process can be defined in a more general form using only eq. 3 for a given set
of coefficientλ(i) (i.e. without using a LM-ARCH process with a set of underlying EWMA).
This formulation gives a broader class of process where the coefficientsλ(i) can be freely
specified, for example by a functional form. In this class of processes, the resulting fore-
cast equation for the volatility is identical to eq. 12, but the equations leading toλ(n, i) are
more complicated. Yet, a LM-ARCH process already provides for a convenient and intuitive
parameterization of the coefficientsλ(i), and this process is accurate enough for our purpose.

B Corrections induced by the AR terms

The analysis of the empirical data shows that an auto-regressive term for the returns is im-
portant and introduces many corrections in the equations. In this section, we derive these
corrections in perturbation, assuming that the leading term is given by the ARCH volatility,
and that the auto-regressive terms are smaller. With an auto-regressive (AR) term for the
returns, the process equations become:

x(t +δt) = x(t)+ r[δt](t +δt) (49)

r[δt](t +δt) = µeff(t) + σeff(t) ε(t +δt) (50)

µeff(t) =
qmax

∑
q=0

µ(q) r(t −qδt) (51)

σ2
eff(t) = (w∞ −β)σ2+(1−w∞) ∑

i≥0
λ(i) r2(t − iδt). (52)

The auto-regressive coefficient for the lagq return isµ(q) (be carefull not to confuseµ(q) with
the decay coefficient of the EWMAµk). In the volatility equation forσeff, the first term in the
right hand side fixes the mean volatility. The parameterw∞ sets the ratio between the mean
volatility σ and the ARCH term. The lagged correlation for the returns is defined as

ρq =
E [ r[δt](t) r[δt](t +qδt) ]

σ2 (53)

σ2 = E
[

r2[δt]
]

whereσ is the mean volatility of the one day returns. The termβ is a function of the AR
parameters given by

β = ∑
q,q′

µ(q) ρq−q′ µ(q′). (54)

and is of orderO(µ2). The above equation for the volatilityσeff is with an affine term that fixes
the mean volatility. To obtain a linear process, we takew∞ = β ≃ O(µ2).

Using the usual properties forε, it is easy to show that for the above process equations, the
mean volatility is given byE

[
r2[δt](t +δt)

]
= σ2. The mean effective volatility is given by

E
[

σ2
eff(t)

]
= σ2 (1−β); it differs from the mean volatility by a term of orderµ2.

The one day return correlations can be evaluated using eq. 50and 51:

E [ r(t) r(t + jδt) ] = ∑
q

µ(q)E [ r(t) r(t +( j −1−q)δt) ]+E [ r(t) σeff ε(t + jδt) ]

= ∑
q

µ(q) σ2 ρ j−1−q

53



We obtain an equation for the correlations

ρ j =
qmax

∑
q=0

µ(q) ρ j−1−q (55)

with ρ0 = 1. The solution forρ can be expanded inµ, and the leading term is

ρ j = µ( j −1)+O(µ2) j = 1, · · · . (56)

This equation shows that the empirical lagged correlationsprovide a direct estimate ofµ( j).
With financial data, the computation of the lagged correlations using the usual text book es-
timator proves to be problematic. This is due to the fat tail distribution of the returns, and to
the possibly unclean raw data for less traded securities. Clearly, a robust estimator is needed,
and we use theρSSDcorrelation estimator described in appendix C. When computed with the
one day return over the last 2 year of data, the robust estimator still shows the trace of large
events. Particularly annoying is when a large event drop outof the 2 year windows, creating
an abrupt change in the correlation. To mitigate this effect, the robust correlation is com-
puted with weighted returns, and the weights implement a simple linear decay in the 2 years
windows. When estimating the correlation at the timet, the returnr(t ′) is weighted with

w(t ′) = 1− t− t ′

2 year
for t −2 year≤ t ′ ≤ t. (57)

The weights have the advantage to put more emphasize on the recent past, in line with the
volatility estimator.

The process equations are parameterized4 so that the mean one day volatilityE
[

r2[δt]
]

is
set byσ2. For risk evaluations, the volatility at the horizon∆T is needed. This volatility is
different from the usual scaling

√
∆T/δt σ because of the AR term. The meann day volatility

σ[nδt] can be estimated using the aggregation of the returns:

σ2[nδt] = E
[

r2[nδt](t)
]
= E



(

n−1

∑
j=0

r[δt](t− jδt)

)2



= σ2 ∑
j , j ′

ρ j− j ′ = σ2

(
n+2

n−1

∑
j=1

∑
j ′< j

ρ j− j ′

)

=
∆T
δt

σ2

(
1+

2
n

n−1

∑
j=1

(n− j)ρ j

)
.

This leads to the formula

σ2[nδt] = E
[

r2[nδt](t)
]
=

∆T
δt

σ2

(
1+2

n−1

∑
j=1

(1− j
n
)ρ j

)
. (58)

The last contribution in the right hand side gives the correction due to the AR term. This
computation shows that the volatility forecasts needed forrisk estimations must be corrected
by the same factor. In practice, the correction term is evaluated directly by

〈 r2[nδt](t)

∑n−1
j=0 r2[δt](t− jδt)

〉 (59)

4We are deriving the effect of the autoregressive term in a process set-up. In order to have well defined asymptotic properties, the mean
volatility must be fixed by an appropriate constant, in our caseσ. Therefore, in this section, we use an affine process [Zumbach, 2004] (affine
in σ2

eff andr2). At the end of the computation, we setw∞ = β so that the parameterσ disappears from the equation, and a linear (in the square)
process is obtained. This is legitimate, as our goal is to compute forecasts, for which well defined asymptotic properties are not needed. In
this way, we have no mean volatility parameter, likeσ in the final equations.
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where the empirical average〈·〉 is computed over the periodt −2 years tot. In the risk com-

putations, the volatility forecast̃σ2[∆T](t), as computed in the previous section, is multiplied
by this factor.

In the empirical investigation, the lagged correlations for the lag∆T of the returnsr[∆T] is of
particular interest. This term can be evaluated for our process

E [ r[nδt](t) r[nδt](t +nδt) ] =
n−1

∑
j , j ′=0

E
[

r(t +(n− j)δt) r(t − j ′δt)
]

= σ2
n−1

∑
j , j ′=0

ρn− j+ j ′ = σ2
2n−1

∑
j=1

(n−|n− j|)ρ j .

The desired correlation is therefore

ρn[nδt] =
E [ r[nδt](t) r[nδt](t +nδt) ]

E [ r2[nδt](t) ]
=

nσ2

σ2[nδt]

2n−1

∑
j=1

(
1−
∣∣∣∣1−

j
n

∣∣∣∣
)

ρ j . (60)

This equation shows that even when the one day correlationsρ j are small, their effects can
accumulate and lead to larger correlations at longer time horizons. In particular, the empirical
one day lagged correlations can be below the statistical significance threshold, yet they lead to
significant correlations at longer time horizons.

Finally, the auto-regressive term induces a non zero forecast for the return. Let us define

a( j) = E [ r(t + jδt) | Ω(t)] (61)

In order to simplify the computations, let us defineµ(q) = 0 for q > qmax. Using the process
equation 50, we obtain

a( j +1) =
j−1

∑
j ′=0

µ( j ′) E
[

r(t +( j − j ′)δt) | Ω(t)
]
+

∞

∑
j ′= j

µ( j ′) r(t +( j − j ′)δt)

from which a recursion equation fora is obtained:

a( j +1) =
∞

∑
j ′=0

µ( j + j ′) r(t− j ′δt)+
j−1

∑
j ′=0

µ( j ′) a( j − j ′) (62)

With µ≪ 1, we havea = O(µ) and the second sum can be neglected. The desired forecastµeff

is given by

µeff = E [ r[∆T](t +∆T) | Ω(t)] =
n

∑
j=1

a( j)

=
∞

∑
j=0

n−1

∑
j ′=0

µ( j + j ′) r(t− jδt)

and can be set in the same form as the volatility forecast

µeff =
qmax

∑
j=0

µ(n, j) r(t− jδt) (63)

µ(n, j) =
n−1

∑
j ′=0

µ( j + j ′)
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As explained above, the coefficientsµ( j) are evaluated using the robust estimatorρSSDfor the
lagged correlations (computed with weighted one day returns). Then, the return forecast is
computed using the formula 63. The number of lags to considerhas been investigated em-
pirically. An important factor in this choice is related to short term interest rates. Typically,
the central banks set the overnight interest rates and modify the rate on a monthly basis. This
human intervention is particularly obvious for the dollar rate and creates strong lagged corre-
lations up to a month. For this reason, we chooseqmax = 23 days. An empirical investigation
for this parameter shows that this is a good choice.

Long term drifts are also important, particularly for stocks and stock indexes. A measure for
the long term drift, scaled atδt =1 day, is given by

µdrift =
δt

2 years
(x(t)−x(t−2 year) (64)

where this estimator uses the last 2 years of data. The drift appropriates for a forecast at risk
horizon∆T should be scaled by∆T/δt. In back testing, this estimator appears to be fairly
good. This estimator can be rewritten as

µdrift =
1
n ∑

t−2 year≤t ′≤t

r(t ′) (65)

wheren is the number of days in the sum. The final forecast for the expected return is the
sum of the short term auto-regressive part and of the long term drift. As we are using both
estimations, we want to avoid the double counting of the drift. Therefore, when a drift is also
used, the auto-regressive part is modified by

µ(n, j) =
n−1

∑
j ′=0

µ( j + j ′)− δt
2 year

. (66)

C Computation of the correlations

By default, the correlation is evaluated by the usual Pearson product of standardized variables.
Yet, for random variables with fat tails distributions, this estimator has the disadvantage of be-
ing very sensitive to extreme events. To mitigate this effect, we have tried two other estimators
of dependency. After evaluation of the three correlation estimators on financial time series, we
decided to used theρSSDestimator as it provides for a good compromise between robustness
and computational efficiency.

A robust correlation measure is given by the Kendall’s Tau estimator τ (as described for ex-
ample in the Numerical Recipes [Press et al., 2002]). In [Lindskog, 2000], the author proves
that for elliptical distribution, the relation

τ =
2
π

sin−1ρ (67)

holds between the linear correlation and the Kendall tau. Therefore, we use the Kendall Tau
correlation estimator

ρτ = sin
(π τ

2

)
. (68)

This estimator is robust, but the evaluation time grows as∼ n2. For large scale computations,
this is a clear drawback even with today computers.
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[Gnanadeskian and Kettenring, 1972] have introduced another robust estimator for dependency.
In a finance context, it has been used for example by [Lindskog, 2000] to study correlations
in elliptical distributions with fat tail marginals. The estimator is based on standardized sums
and differences, and is calledρSSD. For a time series x, the standardized time series is

x̃ =
x− x̄
σx

(69)

with x̄ the mean ofx andσ2
x = Var(x) the variance ofx. Then, the usual (Pearson) correlation

can be written as

ρ(x,y) = x̃· ỹ =
Var(x̃+ ỹ)−Var(x̃− ỹ)
Var(x̃+ ỹ)+Var(x̃− ỹ)

(70)

A robust estimator for the correlation is obtained by replacing the usual variance estimator by
a robust one. In this work, we have used the mean absolute deviation (MAD) as a more robust
estimator than the variance

MAD(x) =
1
n

n

∑
i=1

|xi −median(x)| (71)

We define theτSSDdependency measure by

τSSD(x,y) =
MAD(x̃+ ỹ)−MAD(x̃− ỹ)
MAD(x̃+ ỹ)+MAD(x̃− ỹ)

. (72)

Empirically, this estimator is close to the Kendall Tau, andtherefore a similar relationship
with the usual linear correlation seems plausible. We definethe robust measure of correlation
based on the standardized sum and difference as

ρSSD= sin
(π τSSD

2

)
. (73)

This estimator is robust (but less robust than the Kendall Tau), and the computational time
grows as∼ n (because the MAD evaluation requires computing the median,and this can be
done in O(n) time as a complete ordering is not needed [Press et al., 2002]). As 2 years of data
is already largen≃ 520, this estimator proves to be substantially faster than the Kendall Tau.
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D FAQ

What is this memory decay for the volatility?
The volatility of the financial time series changes with time, namely there are periods of high
volatility and periods of low volatility. This is theheteroskedasticity, meaning that the variance
is not constant but is clustered. Thus, the volatility showssome persistence, or “memory”. To
quantify the persistence, the lagged correlation of the volatility is computed. The decrease of
the correlation measures how and how fast the clusters of volatility can appear and change.
This lagged correlation is a characterization of the “memory” of the volatility.

This memory is crucial for risk estimation. The important point to realize is that a risk evalu-
ation is a forecast, namely an estimate of the possible financial losses between now and some
future date. Beside, the magnitude of the risk is directly proportional to the volatility. Be-
cause of the memory of the volatility, forecasting the volatility is possible, and hence a risk
estimation.

Why a single decay factor can be used in the RM1994 methodology The fact that an
EWMA with a “universal” decay factor gives good forecasts for every security can be under-
stood with the following argument. To a decay factor ofµ =0.94 corresponds an exponential
with a characteristic timeτ = −1/ ln(µ) ≃ 16.2 business day. The memory for the volatility
–as measured for example by the lagged correlation of the absolute return– decays slowly (as
a logarithm). Therefore, most of the information comes fromthe most recent past, and the
forecast should put the largest weights on the few last returns. On the other hand, using only
a few returns leads to a fairly noisy estimator, and a better statistic requires to use as many
returns as possible. Therefore, there is a trade off betweenwhere most of the information lies
and the variance of the forecast estimator. The optimal trade off is obtained for an intermediate
horizon, in the range of 10 to 40 days. This argument is generic, as the only financial time
series property used is the decay of the lagged correlations. This decay is fairly similar for all
time series and therefore, the same value can be used for all securities.

What is the optimal decay factor for the RM1994 methodology?
The optimal decay factor depends on the risk horizon: the longer the risk horizon, the closer the
decay factor should be to 1. For the volatility forecasts, the optimal values for the characteristic
timeτ can be read from figure 13 and converted to the decay factor usingµ= exp(−1/τ) with
τ expressed in days. Backtesting the RM1994 methodology as done in [Zumbach, 2006a]
indicates slightly larger optimal values.

For risk evaluation at long time horizons, is it better to use returns with longer time
intervals, say for example weekly or monthly returns?
The short answer is that, with the new methodology, it is always better to use daily returns.
For the other methodologies, the long answer involves two lines of arguments related to the
minimal sufficient statistics and to the correlation between returns.

The “minimal sufficient statistics” answers the following question. Let us estimate a given
statistical quantity, say for example the long term mean of the return. What is the minimal
amount of information that should be given to be able to compute, without loss of accuracy, the
desired statistical quantity? This minimal information iscalled “minimal sufficient statistics”.
For the example of the long term mean, only the start and end prices are sufficient. This
is a considerable reduction of the data set as only three values are needed (the two prices
and the time interval). For the volatility, the answer is that all the (absolute values of the)
returns should be given. Any reduction of the data set is loosing information. In other words,
the returns at the highest frequency should be used. This implies that the volatility (and its
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forecasts) should be computed with daily returns (even moreefficient would be to use intra-
day prices).

Yet, the whole situation is not so simple because of the lagged correlations between returns.
These correlations create serial dependencies, which implies thatE

[
r2[δt]

]
6= E

[
r2[∆T]

]
.

This inequality means that the variance of the returns is dependent on the risk horizon, an
effect that can be observed on fig. 25. For a given risk horizon∆T, the relevant quantity is
a forecast forE

[
r2[∆T]

]
. Therefore, the aggregated returnr[∆T] should be used so that the

serial correlations are included in the computations.

As both arguments go in the opposite directions, the optimalvalue for the return time horizon
should be somewhere betweenδt = 1 day and the risk horizon∆T. As the lagged correlations
are small, the optimal is likely close to one day. Beyond thissimple argument, an answer to
the above question would require a specific quantitative study.

In the new RM2006 methodology, the lagged correlations between the returns are computed
and discounted explicitely. Therefore, only the argument about minimal sufficient statistics
applies, and it is always better to use one day returns in the computations. Using any longer
time interval for the returns leads to a loss of accuracy.

Why not use a GARCH(1,1) process to improve the risk methodology?
The GARCH(1,1) process is parameterized by 3 values, typically denoted by(α0,α1,β1) or
by (ω,α,β). A combination of these parameters fixes the mean volatility, namely

E
[

r2 ]= E
[

σ2 ]=
ω

1−α−β
. (74)

Because the mean volatilityE
[

r2
]

is strongly asset dependent, the parameters cannot be
chosen with the same values for all time series. For a universe with n assets, a multivariate
GARCH(1,1) should have at leastn parameters, and possiblyO(n2) parameters. This would
be very impractical and very fragile.

Another reason is related to the decay of the correlation fora GARCH(1,1) process. The decay
of the correlation for the volatility can be computed analytically for this process, and is found
to be exponential. On the other hand, the empirical time series have a much slower logarithmic
decay. Therefore, the volatility forecasts derived from a GARCH(1,1) process are not optimal.
Both reasons lead us to use a long memory process, as explained in sec. 2.1

Why not use a Student distribution with the RM1994 methodology?
You can, but the improvement is not that large. To improve significantly the RM1994 method-
ology, several modifications must be done. For example, the fig. 39 shows a comparison
between RM1994, Long memory + Student, and RM2006.

Beyond the underlying risk methodology, why is the risk evaluation of actual securities
so complicated?
This paper discusses risk methodologies, namely given one “simple” asset, it shows how to
compute a risk estimate. A “simple” base time series is called arisk factor. They corresponds
essentially to linear assets, like equities or foreign exchange currencies. Yet, today’s financial
world uses derivatives, possibly with very complex structures. These derivatives should be
priced as a function of the underlying risk factors, and these contracts can be fairly sophis-
ticated. Another example of “derivative” are bonds: the underlying simple risk factor is the
interest rate curve as function of the maturity. The variousbonds, with the coupons occur-
ing at various time point, should be priced from the underlying interest rates and the cash
flows stream. More complex derivatives can be for example an option on a swap for interest
rates (i.e. a swaption). Moreover, some trading strategiesinvolve long and short positions in

59



derivatives and the underlying assets. These kinds of strategies can expose the discrepancies
between the option pricing used in the market and in the risk evaluation. Therefore, the option
pricing used in risk evaluation has to follow closely the best practice used in the market. This
is a first level of complexity.

A second level of complexity is related to the actual detailsof the financial contracts. For
example, a simple bond pays coupons according to a given schedule. In order to price this
bond from the interest rates curve, the actual coupon schedule must be known. Therefore, it is
not enough to have long time series for the prices of the risk factors, theterms and conditions
of the actual contracts should also be available.

A third level of complexity is related to the detailed analysis of the risks inside a portfolio:
beyond the global risk figure, one also would like to understand where the risks originate
from. For example, an analysis according to the currencies or industrial sectors can give a
diagnostic that will help reducing the risk exposure. Insights about more global changes can
be obtained by scenario analysis, or “what if” analysis (what if oil prices rise? What if the
USD interest rates rise? etc...). Possibly, hedges can be added in a portfolio following such an
analysis.

At the end, the techniques presented in this paper are the foundation of risk evaluations, yet
they represent only a tiny fraction of the software in today applications developed for risk
management. A large part of such softwares correspond to thefirst and third points above,
whereas the second point requires painstakingly maintaining large data bases feeded by many
data sources. Moreover, today users expect convenient point-and-click tools to analyse and
understand the risks of their positions. Eventhough the newRM2006 methodology can appear
as being quite complex, it is just a small part in a much largermachinery.
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E Notation

δt: The elementary time step for the process, in our caseδt = 1 day.

∆T: The risk horizon (i.e. a time interval).

n: The number of days for the risk horizonn = ∆T/δt.

j: Index for the days in the future 1≤ j ≤ n.

p: The price time series.

r: The return time series, withr[∆t](t) = p(t)− p(t−∆t).
The returns at a one day horizon are abbreviated byr[δt] = r.

ε: The residual time seriesε[∆T]. See eq. 15 and 16.

p∆T(ε): The probability distribution for the residuals. In principle, the shape of the distribution
can depend on∆T.

γ[∆T]: The scale factor such that〈ε2[∆T]〉 = 1. See eq. 16 and 17.

σeff: The “effective” volatility, as given by a particular process.

k: The component index for the multiscales long memory ARCH model 1≤ k≤ kmax.

σk: The volatility measured by an EWMA (exponential moving average) at the time horizon
τk.

µk: The decay coefficient for thek-th EWMA with characteristic timeτk in a multi-time
scales ARCH process 0< µk < 1 andµk = exp(−δt/τk).

wk: The weight for thek-th component in a multi-time scales ARCH process. The coefficients
must obey 1≤ wk ≤ 1 and∑k wk = 1.

τ0: The decay coefficient for the weightswk with a logarithmic decay form.

λ(i): In the computation of the effective volatility, the weightfor the lagi return square. This
corresponds to the weights for a 1-step forecastλ(1, i).

λ(n, i): In the computation of then steps forecasted volatility, the weight for the lagi return
square.

i: The index for the days in the past 0≤ i ≤ imax for the volatility computation.

µeff: The autoregressive termµeff(t) = ∑qmax
q=0 µ(q) r(t −qδt).

µ(q): The coefficients for the expansion of the autoregressive term (beware not to confuseµ(q)
with the decay coefficientsµk of the EWMA).

q: The index for the days in the past for the auto-regressive terms 0≤ q≤ qmax.

ρ j : The lagged correlation for the one day return, for the lagjδt.

ρ j [∆t]: The lagged correlation for the∆t days return.

y[∆t]: The yield (or interest rate) for a time-to-maturity∆t, typically related to a bond with
maturity at timet +∆t.
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