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DataMetrics is modifying its technique for estimating zero-coupon interbank and gov-
ernment benchmark curves. The new algorithm is employed together with additional
synchronized input data to deliver better-quality curves. The modified technique assumes
the instantaneous forward rate is a constant between the maturity dates of observable
interest rates. Together, the flat forward technique and new input data increase pricing
and risk measurement accuracy, particularly at the short end. The flat forward technique
is shown to be preferable to plausible alternative approaches.

DataMetrics is modifying the bootstrapping technique it uses to estimate zero-coupon curves.
The modified bootstrapping technique assumes the instantaneous forward interest rate is a
constant between observed bond or other security maturities. We therefore refer to it as
the “flat forward” technique. DataMetrics applies it to a range of interbank and government
benchmark zero-coupon curves in both key currencies and emerging markets.

The new algorithm is being employed together with additional input data to deliver better-quality
curves. Together, the flat forward technique and new input data provide several advantages:

• The underlying data for the interbank and government curves, particularly the government
bonds, can be sparse. For example, there are only 6 U.S. Treasury benchmarks, of which
3 are T-bills and 3 are coupon bonds. The flat forward approach avoids potentially adding
spurious information to that contained in the modest available underlying data set, while
still permitting accurate pricing.

• It permits DataMetrics to estimate time series of spot interest rates with any time to
maturity ranging from overnight to 30 years, applying any desired compounding interval
or day count convention uniformly across the curve. In particular, it becomes it easy to
add new RiskMetrics vertexes if needed and supported by the data. It also permits the
generation of time series of forward rates with any compounding interval, time to maturity,
or time to settlement.

• It increases the pricing accuracy of DataMetrics fixed-income curves for fixed-income in-
struments, particularly at the short end.

• The new approach improves the accuracy of volatility and correlation estimates and thus of
fixed-income risk measures generally. It particularly enhances risk reporting for short-term
fixed income positions and for money-market futures spread trades.

• The modified bootstrapping technique permits the original security prices used in the esti-
mation procedure to be recovered from spot rates. For example, if a money market futures
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expiring in exactly 15 months is used in the procedure, the implied rate can be recovered
from the estimated 15- and 18-month spot rates.

• The data underlying the curves can generally be captured simultaneously, so the new curves
will be synchronous.

We can think of an interest-rate curve as an unobservable price schedule for fixed income
securities with the same liquidity and credit-risk characteristics, but diverse cash flow structures
and day count and compounding conventions. A government benchmark curve is the price
schedule for central government obligations; an interbank curve is the price schedule for debt
between highly-rate banks, or between banks and highly-rated corporate counterparties. Such
price schedules should be expected to accurately reflect interest rates on any fixed-income
security in that category, regardless of cash flow structure and day count and compounding
conventions.

The flat forward approach fully exploits all the information about an interest rate curve contained
in the observable market data, while at the same time adding no additional assumptions about
the level and shape of the curve. The precise settlement practices, maturity dates, compounding
frequency, pay frequency and day count conventions underlying the input data are taken into
account in the calculations.1

1 Constructing the curve: source data

There are two aspects to the curve construction technique: how the raw data are manipulated,
and how the raw data are selected from the many fixed-income securities on the curve. We
will take them in turn in this and the next section.

Interbank or swap curves represent interest rates on unsecured, non-negotiable loans between
high-quality banks and corporations. They can be based on interbank deposit rates or fixings,
money market futures, and plain vanilla swap rates. The shortest maturity points on the
interbank curve are generally derived from indicative deposit rates or deposit rate fixings.
Where available, the first point on the curve is an overnight rate, generally an overnight Libor
or repo rate. For the U.S. dollar (effective Fed funds) and the Euro (Eonia), a weighted
average index of overnight transactions are available. For emerging market currencies and
some industrial country currencies, overnight index swap rates and money market rates implied
by foreign exchange forwards may be used. Where available, money market futures are used
for the 3-month to 2- or 3-year sector, and swap rates for the longer-term sector.

Government benchmark curves represent default risk-free interest rates. Central or federal
government bills and bonds are used where possible. In some cases, liquid markets in short-
term central government debt do not exist. In that case, interbank obligations may be used to
construct the short end of the curve.

1 Further detail on the flat forward technique is contained in Malz (2002). Earlier work on DataMetrics yield curves
is presented in Zangari (1997). Fabozzi (1999) has a textbook description of the standard bootstrapping approach to
yield curve estimation. A recent example of the use of the flat forward technique, by the European Central Bank, is
described in Brousseau (2002).
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Table 1
Interbank curve data sources by maturity range

U.S. dollar
Overnight Effective Federal funds rate or USD deposits Actual/360
1 week to 3 months USD deposits Actual/360
3 months to 2 years Settlement prices of Chicago Mercantile Exchange

(CME) 3-month Eurodollar futures
Actual/360

2 years to 30 years Plain vanilla interest rate swaps vs. 6-month Libor
flat

Semiannual bond basis

Euro
Overnight EONIA or EUR deposits Actual/360
1 week to 3 months EUR deposits Actual/360
3 months to 2 years Settlement prices of London International Financial

Futures and Options Exchange (LIFFE) 3-month Eu-
ribor futures

Actual/360

2 years to 30 years Plain vanilla interest rate swaps vs. 6-month Libor
flat

Annual bond basis

The source data generally has different day count conventions. All rates are converted if
necessary to a common day count convention of Actual/365 as part of the curve estimation
procedure. For money market rates and rates implied by 3-month money market futures,
this generally involves multiplying the rates by 360

365 . Futures on 3-month money market rates
are treated as having a time to maturity of exactly 91

365 years. Regardless of the day count
basis or other bond-mathematical conventions underlying the input data, the output data can
be converted to any desired basis. DataMetrics and RiskManager employ Actual/365 as a
common default day count basis for all curves.

In many cases, settlement of fixed-income transactions occurs one or several days after the
counterparties conclude a deal. For example, the value date for most OTC money market
transactions is 2 days after the transaction date. We take the time to settlement into account
in identifying the maturity date correctly for money market transactions less than 1 year.
However, we do not take the time to settlement itself into account in setting discount factors
and zero-coupon rates for two reasons. First, in most cases, the time to settlement is not
uniform across the data sources underlying the curves. Second, and more importantly, the time
to settlement does not affect the validity of the interest rate as a representation of today’s
price of money for the term to maturity, as interest is not charged until the value date.

Details are presented in Table 1 for the USD and EUR interbank curves.

2 Constructing the curve: mechanics

Each curve has a short-maturity segment based on add-on or discount rates or forwards or
futures on add-on or discount rates. This sector of the curve, called the “stub,” does not
require bootstrapping, as the rates on the underlying instruments can be readily converted to
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zero-coupon or spot rates. Longer term rates are based on coupon bonds or swaps. The
longer-term portion of each curve is bootstrapped using the flat forward assumption. The
precise settlement practices, maturity dates, compounding frequency, pay frequency and day
count conventions underlying the input data are taken into account in the calculations.

2.1 Notation

We let t denote the current date, T and its subscripted variants a maturity, settlement or payment
date, and τ and its subscripted variants, measured in years, a time to maturity, settlement or
payment.

The immediate output of the procedure is a set of instantaneous forward rates with specific
settlement dates, which we call forward vertexes, as shown in Figure 1. Let Tj , j = 0, 1, ..., N
be the forward vertexes for which instantaneous forward rates are estimated, and let {fτj }Nj=1
be the set of estimated instantaneous forward rates from which the curve is constructed. The
indexing is carried out so that each instantaneous forward rate fτj applies on the interval
[τj−1, τj ). The flat forward assumption implies that for any 0 ≤ τ ≤ τN, fτ = fmin[{τj |τj>τ }].
As a convention, we set τ0 ≡ 0; for τ ≥ τN , we set fτ = fτN .

2.2 Relationships among spot and forward rates

A τ -year continuously compounded spot rate, that is, the constant annual rate at which a
pure discount bond’s value must grow to reach one currency unit at time T , is computed by
integrating the instantaneous forward curve over the time to maturity:

rτ = 1

τ

∫ τ

0
fsds. (1)

If the instantaneous forward rate is higher (lower) than the spot rate for maturity τ , the spot
rate rises (falls) at the exponential rate 1

τ
(fτ − rτ ), as shown in Figure 1.

Discount factors, that is, the time-t prices of pure discount bonds maturing at time T are
constructed from the forward rates or spot rates. The discount factor pτ is related to spot
rates by

pτ = e−rτ τ = exp

(
−

∫ τ

0
fsds

)
. (2)

2.3 Constructing the stub portion

Deposit rates are expressed as annual add-on rates, that is, interest is computed by multiplying
the quoted rate by the fraction of a year for which interest will be applied. Let r

dep
t,T represent

a τ ≡ T − t deposit rate. Its discrete compounding interval is equal to t − T = τ . The time
to maturity of a deposit or fixing is computed from the actual maturity date, which in turn



31 Estimation of zero-coupon curves in DataMetrics

Figure 1
Forward and spot rates

1 7 30 60

3.25

3.30

forward

spot

Instantaneous forward rates and continuously compounded spot rates, EUR
swap curve, Nov. 16, 2001.

is computed using the ISDA Modified Following Business Day convention and its refinements
for maturities below 1 month.

The continuously compounded spot rate rt,T is

rt,T = ln(1 + r
dep
t,T τ )

τ
. (3)

A continuously compounded forward rate ft,T1,T2 with time to settlement τ1 and time to maturity
τ2 can be computed from the continuously compounded spot rates derived from two deposit
rates with maturities T1 and T2. Letting T1 − t = τ1 and T2 − T1 = τ2,

ft,T1,T2 = rt,T2(τ1 + τ2) + rt,T1τ1

τ2
. (4)

We need next to convert the forward with a discrete time to maturity (τ2) to an instantaneous
forward curve. A forward rate with a discrete time to maturity is the average of the instantaneous
forward rates over the time to maturity:

ft,T1,T2 = 1

τ2

∫ T2

T1

ft,sds. (5)
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Figure 2
Forward and spot rates: overnight to 18 months
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Instantaneous forward rates and continuously compounded spot rates, EUR swap curve, Nov. 16, 2001.
Vertical grid lines represent DataMetrics cash flow vertexes.

Under the flat forward assumption, the instantaneous forward rate ft,T is constant over the
interval T1 ≤ T ≤ T2, conveniently implying

ft,T = ft,T1,T2, T1 ≤ T ≤ T2. (6)

The computations for the Libor-based short end are illustrated for the EUR swap curve in
Panel A of Figure 2.

To apply this to government bills, let rbill
t,T be the bond-equivalent yields to maturity on Treasury

bills. For U.S. T-bills, the convention is to quote the rates as if they were deposit rates (no
compounding) for remaining times to maturity under 182 days and as spot rates with semi-annual
compounding for maturities 6 months and greater.

For interbank curves, the next portion of the curve is computed for major currencies from
prices of money market futures. Let t −T1 = τ1 be the time to maturity of the futures contract
and T2 − T1 = τ2 the time to maturity of the underlying deposit fixing rate. We treat the
money market rate ft,T1,T2,τ2 implied by the futures price as a money market forward with
time to settlement τ1 and time to maturity and compounding interval equal to τ2. We ignore
the convexity adjustment arising from the mark-to-market and margining features of futures
contracts, as it is likely to be very small for the relatively short futures maturities used here.

Most money market futures are claims on 3-month money market rates, so τ2 is the time to
maturity of the underlying 3-month deposit and is expressed on an Actual/360 or Actual/365
basis, depending on currency. We convert to Actual/365 when that is not the day count basis for
the currency in question, but we do not compute the exact time to maturity, instead assuming
a uniform time to maturity τ2 = 91

365 years. This assumption induces at worst a trivial distortion
when the actual number of days to maturity is, say, 89 or 93.
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The continuously compounded forward rate fτ1,τ1+τ2 with time to settlement τ1 and time to
maturity τ2 is

fτ1,τ1+τ2 = ln(1 + fτ1,τ1+τ2,τ2τ2)

τ2
. (7)

Just as in the case of two money market rates with different maturities, Equation (6) implies
that this is the instantaneous forward rate over the interval τ1 ≤ τ < τ2.

The computations for the futures-based portion of the curve are illustrated for the EUR swap
curve in Panel B of Figure 2.

2.4 Constructing the coupon portion

The portion of the curve based on swap rates or coupon bonds is derived by bootstrapping.
The procedure is based on the bond equation

pt,T ,h(c) = c · h
K∑

k=1

e−rt,τk τk + e−rt,T τ , (8)

where pt,T ,h(c) is the dirty price of a bond maturing at time T with an annual coupon rate c,
expressed as a decimal and paid 1

h
times annually, and τk = Tk − t, k = 1, ...K , with TK = T ,

are the times to the coupon or fixed-rate payments. The bond price is expressed as a percent
of par, i.e. par equals unity. We can express the bond price in terms of discount factors or
instantaneous forward rates rather than spot rates by substituting Equation (1) or Equation (2)
into Equation (8).

A similar but somewhat simpler equation relates quoted swap rates to the par value of a
coupon bond with a coupon equal to the swap rate:

1 = c · h
τ
h∑

k=1

e−rt,k·hk·h + e−rt,T τ , (9)

In bootstrapping, the pt,T ,h(c) are observed, and we use Equation (8) to infer the unobserved
rt,T . The particular trick in bootstrapping is to sequence the computations so that only a
subset of rt,T (or corresponding subset of pt,T or ft,T ) at a time appears as an unknown in
Equation (8).

In our version of bootstrapping, we employ the forward discount factor pt,T1,T2 , that is, the
time-t price of a forward claim on a discount bond settling at time T1 and maturing (at a
value of one currency unit) T2. It is related to spot discount factors by

pt,T1,T2 = pt,T2

pt,T1

. (10)
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Figure 3
Estimated spot and forward rates

A. EUR interbank curve
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RiskMetrics volatilities with a 90-day window in percent at an annual rate. Volatility of discount factor
(“price volatility” or “swap zero volatility”).

We can also express the forward discount factor in terms of instantaneous forward rates:

pt,T1,T2 =
exp

(
− ∫ T2

0 ft,sds
)

exp
(
− ∫ T1

0 ft,sds
) = exp

(
−

∫ T2

T1

ft,sds

)
. (11)

If the instantaneous forward rate is constant between settlement dates T1 and T2, we have

pt,T1,T2 = e−ft,T2 τ2 . (12)

The bootstrapping step is to solve Equation (12) for ft,T2 . Numerically, this is similar to a
yield to maturity calculation and is well-behaved.

Estimates for the entire curve and for the U.S. government benchmark curve are displayed in
Figure 3.

2.5 Creating constant-maturity time series on a common compounding and day count basis

Before presenting the zero-coupon rates, a set of bond-mathematical conventions and a set of
cash flow nodesor vertexes must be determined. The risk engine must be aware of these
settings when the data is presented. Cash flow vertexes are the times to maturity of constant-
maturity time series of spot rates or discount factors. For each curve, the constant-maturity
spot rate time series are the risk factors to which fixed-income exposures of the corresponding
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type are mapped.2 Spot and forward rates with specific discrete compounding intervals can
now be constructed from discount factors or continuously compounded spot rates.

Cash flow and forward vertexes are not generally identical. The interest amount over the interval
[t, T ] is rt,T τ . We can infer only the incremental interest amount ft,Tj+1(Tj+1−Tj ) accruing—or
equivalently, the average rate at which interest accrues—between successive forward vertexes
Tj+1 and Tj from the observed data. The hypothesis that the forward rate is constant between
vertexes thus corresponds precisely to the actual limitations of the data. The forward rate for a
forward vertex Tj+1 is computed so as to exactly match each successive observed security price,
given the set of forward rates ft,Tk , k = 0, . . . , j . Original security prices cannot generally be
reconstructed from spot rates for cash flow vertexes.

The spot rates corresponding to each cash flow vertex are almost always found by interpolation,
since the forward vertexes are generally close to but not precisely equal to the desired cash
flow vertexes. The observed data do not impose a choice of vertexes, since spot rates for any
time to maturity can be computed from the forward vertexes. However, by choosing vertexes
that are close to the observed data on which a particular curve is based, we can avoid creating
risk factors in which interpolation plays more than a minor role, while still being able to map
most exposures to relatively nearby vertexes.

Figure 4 displays time series of spot rates for the period October 1998 to October 2000. The
1-month rate rises at the end of 1998 and 1999: year-end spikes in short rates are routine.
The 6- and 18-month rate were less susceptible to Y2K effects. The modified bootstrapping
technique eliminated the need to edit data in the runup to Y2K.

For the Euro during 1999, there are frequent spikes, mostly downward, in the overnight
rate. These spikes generally occur on the 23rd day of each month, the terminal date for the
measurement of reserve balances and reservable liabilities in the European Central Bank (ECB),
and have become less pronounced as the European banking system gained experience with
ECB operating procedures. There is a similar residue of central bank operating procedures on
very short-term USD rates, but less pronounced: average reserves and reserve requirements
for the 2-week reserve maintenance period are calculated on “settlement Wednesdays.” For
both currencies, there are also day-of-week effects. In particular, overnight rates tend to fall
on Fridays, as banks shed excess balances that will earn low rates over a 3- or 4-day period.

Figure 6 displays correlations of discount factors along the curve over time for the period
October 1998 to October 2000. The correlation between the 1-year and 2-year interbank
discount factor is difficult to estimate for most currencies using most estimation techniques,
since this interval encompasses the “graft point” at which the input data switch from deposits,
forward rate agreements or money market futures to plain vanilla swaps. Using the flat forward
approach, estimates of this correlation are high and remain fairly high (above 0.65) even at
year-end.

2 Mina and Xiao (2001), in their discussion of cash-flow mapping (pp. 41ff.), refer to cash flow vertexes as
RiskMetrics vetexes.



RiskMetrics Journal, Volume 3(1) 36

Figure 4
Estimated interbank spot rates
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Estimated spot rates, May 26, 1999 to April 24, 2002. O/n: overnight. Source: DataMetrics.

Figure 5
Estimated interbank volatilities
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Figure 6
Estimated interbank correlations
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RiskMetrics correlations with a 90-day window at an annual rate. Correlations of discount factors.

3 Alternative approaches are less satisfactory

An alternative to the flat forward assumption is to assume that the instantaneous forward rate
is continuous and linear between forward vertexes, that is, the instantaneous forward curve.
The piecewise linear approach is appealing for several reasons:

• It permits the forward curve to be a continuous function rather than a discontinuous step
function.

• Under the flat forward assumption, the spot curve is not continuously differentiable. This
manifests itself in kinks in the spot curve at the forward vertexes. If the forward curve
is above the spot rate, so the spot rate is rising, the spot curve is concave to the origin.
If the forward curve is below the spot rate, so the spot rate is falling, the spot curve is
convex to the origin.

• At the same time, it retains the advantage of the flat forward approach of not assuming
anything about the curve beyond what is contained in observable market prices.

Unfortunately, the piecewise linear approach can induce wide swings in forward rates when
the spot curve is not monotonic or when it has strong variations in slope between forward
vertexes. This property is illustrated in Figure 7, which compares the two approaches for the
stub portion of the EUR interbank curve. The spot rate rises by about 50 basis points over the
6 month to 2 year maturity interval. Under the flat forward assumption, the estimated forward
rates rise somewhat faster, about 100 basis points, and monotonically. Under the piecewise
linear forwards assumption, the forward rates swing up and down with an amplitude of about
200 basis points, but rising on net over the 6 month to 2 year maturity interval. The spot
rates for the forward vertexes are identical under both approaches. The resulting spot curve
under the piecewise linear forwards assumption is smoother, but has wiggles that are difficult
to interpret. The swings in the forward curve are difficult to accept.
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Figure 7
Model comparison: EUR interbank rates
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Continuously compounded spot rates and instantaneous forward rates, Nov. 30, 1999.

Figure 8
Model comparison: US government benchmark rates

A. Flat forwards

0 5 10 15 20 25 30

3.5

4.0

4.5

5.0

5.5

6.0
forward curve

spot curve

B. Piecewise linear forwards

0 5 10 15 20 25 30

4

5

6

7

forward curve

spot curve

Continuously compounded spot rates and instantaneous forward rates, Apr. 2, 2001.

Figure 8 compares the two approaches for the U.S. government benchmark curve. The raw
data is more sparse, so the concavity of the spot curve between forward vertexes is more
pronounced than for the interbank curves. The spot rate is rising over most of the term
structure, but the upward slope diminishes at the long end. The flat forward approach captures
this behavior with much smaller variations in the forward rate. Under the piecewise linear
forwards assumption, the forward rate is forced to drop and then rise precipitously in order
to price the observable securities precisely.
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