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Foreword

In 1994 J.P. Morgan, the global investment bank, launched RiskMetricsR©, a transparent approach to measuring
the risk of financial assets. RiskMetrics educated the world on the importance of understanding financial
risk, and provided a data set to give institutions the ability to calculate their own risk exposures, as well
as a technical document explaining all the mathematics behind the methodology. RiskMetrics was fully
transparent and open, and free to all market participants and observers.

RiskMetrics quickly became the standard for institutions around the world to measure and manage their
financial risks. Shortly after the launch of RiskMetrics, the regulators from the G-7 countries adopted a
requirement that all banks report their market risk exposure. Over the last few years similar requirements
have been extended to non-G-7-country banks, as well as non-financial institutions. Value-at-Risk, or VaR,
the approach RiskMetrics made public, has now become the standard risk measure for over 5,000 institutions
around the world.

The success of RiskMetrics was obvious. It filled a market need. Global markets were becoming more
volatile and interrelated, more complex instruments such as derivatives were being traded, and firms were
deriving an increasing amount of their profits from trading and investments in financial assets. Institutions
were able to quantify the returns of these activities, but few were able to accurately measure their risks. They
knew that some investments were riskier than others, but they didn’t know by how much, or how to quantify
the total risk of their portfolios of investments.

RiskMetrics was successful because senior managers, regulators, and shareholders recognized thatReturn Is
Only Half the Equation. No decision should be made without understanding both the risk and the expected
return of the outcome. RiskMetrics gave managers for the first time a transparent and consistent approach to
quantify the risk of each of their financial investments and compare it to their expected returns, so that they
could make better and more informed investment decisions.

Today there is a similar market need. Individuals around the world are taking on more responsibility for their
financial futures. Investors as well as their financial advisors are looking at increasingly volatile markets and
a wider array of increasingly complex investment options. And an individual’s financial investments are more
important to his future life than ever before. While individuals are given detailed return information, the best
risk information they can get is “this stock or portfolio is aggressive,” which they understand is riskier than
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ii FOREWORD

“this stock or portfolio is moderate or conservative.” They know that stocks are riskier than bonds, which are
riskier than cash, but they don’t know by how much, or how to quantify the total risk of their entire portfolio
of investments.

To meet this need, the group that was responsible for RiskMetrics at J.P. Morgan is launching RiskGradesTM .
RiskGrades is an open and transparent benchmark for individuals and their financial advisors to measure
financial risk. RiskGrades include several components. First there is an online course,Understanding Risk,
explaining the basic concepts of financial risk. Second, there is the RiskGradeTM data set allowing individuals
the ability to measure the risk of stocks, bonds, funds, and other financial assets around the world. Third, there
are the RiskGrades online analytics giving individuals the tools necessary to manage the risk of their own
investment portfolios. Finally there are two documents —Return is Only Half the EquationTM , a practical
risk management guide for individual investors, and theRiskGradesTM Technical Document, fully exposing
all the calculations behind the RiskGrades approach. And all of the RiskGrades components are based on the
same RiskMetrics research and technology used by thousands of leading institutions and regulators around
the world.

The intent of RiskGrades is to help individuals make better investment decisions. RiskGrades do not by
themselves provide advice, or make buy and sell recommendations. RiskGrades do not tell you what stock
will do better in any one year, or tell you what investment strategy is right for you. Instead RiskGrades
provide information about risk — information that should be considered, along with the return information
you are already getting, to determine the best investments for you and your portfolio.

We have all grown accustomed to the infamous phrase “historical performance is no guarantee of future
results,” and can be sure that no mathematical model can predict the future. Ultimately, successful investing
can only be achieved by people — people who have good information, good discipline, and good judgement.
RiskGrades provide some of that information, and some of that discipline. The judgement is up to you, and
when appropriate, your professional financial advisor.

Ethan Berman
CEO
RiskMetrics

RiskMetrics
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Chapter 1

Introduction

The RiskGradeTM statistic is a new measure of volatility, recently devised by the RiskMetrics Group to help
investors better understand their market risk. RiskGrade measurements are based on the exact same data
and analysis as RiskMetricsR© Value-at-Risk (VaR) estimates and, in fact, can be translated back into VaR
estimates.

The RiskGrade measure, however, is scaled to be more intuitive and easier to use than VaR. RiskGradesTM are
measured on a scale from 0 to 1000 or more, where 100 corresponds to the average RiskGrade value of major
equity market indices during normal market conditions from 1995 to 1999. You would expect cash to have
a RiskGrade value of zero, while a technology IPO may have a RiskGrade value exceeding 1000.1

1.1 Features of RiskGradesTM

RiskGrades vary over time. The RiskGrade measure is dynamic and adjusts to current market conditions:
during turbulent times, such as the Asian Flu or the Russian Crisis, the RiskGrades of major stock markets
can easily escalate beyond 200, while in calmer markets, RiskGrades could fall below 50. RiskGrades can
help investors dynamically monitor exposure to market risk.

RiskGrades allow comparison between investments. RiskGrade is a standardized measure of volatility, and
therefore allows “apples-to-apples” comparison of investment risk across all asset classes and regions. Thus
we can say that a Brazilian stock with a RiskGrade of 300 is six times as risky as an Asian bond fund with a
RiskGrade of 50.

RiskGrades capture currency risk. Does a European investor in Yahoo! stock have the same risk as an
American holding Yahoo!? Yahoo! is a riskier proposition for the European investor, because in addition to

1Most of this chapter was written by Alan J. Laubsch of RiskMetrics. He also created the web-based risk education course
Understanding Riskat http://www.riskgrades.com .
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2 CHAPTER 1. INTRODUCTION

the stock price fluctuation, she is exposed to the USD/EUR exchange rate fluctuations (e.g., she loses if USD
depreciates relative to EUR). The RiskGrade statistic captures this currency risk component, and predicts the
total price risk of your investment. Clearly, the value of a RiskGrade varies, depending on the home currency
of the investor.

1.2 History of RiskMetrics® RiskGradesTM

While the RiskGrade measure was launched only recently, the concepts behind RiskGrade have evolved from
more than a decade of risk management research and practice. J.P. Morgan became an early pioneer of market
risk measurement in the 1980s, when former CEO Dennis Weatherstone made a famous request: to have a
one-page summary report of all the firm’s risks on his desk by 4:15 PM. This 415 Report became a cornerstone
of J.P. Morgan’s day-to-day risk measurement, and provided management with timely information to manage
enterprise-wide market risk.

By the early 1990s, J.P. Morgan had perfected VaR measurement and made a ground breaking decision
to publish its proprietary risk methodology for free over the Internet. J.P. Morgan created the first global
standard for risk measurement when it launched RiskMetrics in October 1994. TheRiskMetrics Technical
Documentis still available for free download from RiskMetrics.

Since then, RiskMetrics methodology has been adopted as a universal standard for risk measurement by
more than 5,000 institutions globally, including regulators, central banks, global financial institutions, money
managers, and large corporations. RiskMetrics was spun off from J.P. Morgan in 1998 to expand its focus
on delivering leading-edge risk management research, software, data and education.

In publishing RiskGrades, we are committed to giving individual investors access to the same risk analytics
used by professional risk managers. Investors can now explore and measure their portfolio risk online, at
www.riskgrades.com .

1.3 Comparison to Other Risk Measures

RiskGrade is not the only risk measure available for investors. Two other popular risk measures are standard
deviation and beta. This section briefly introduces and describes these measures, and with a view of their
uses and limitations.

1.3.1 Standard Deviation

Standard deviation is a general statistical measure of volatility. It can be used to measure the dispersion from
the mean of any data series, such as a time series of returns. Standard deviation has been a classical portfolio

RiskMetrics



1.4. BEYOND RISKGRADESTM 3

risk measure since Markovitz used it in the 1950s to demonstrate the diversification effect of stocks. As a
measure of volatility, standard deviation is similar to RiskGrade, although there are two main differences.

The first is that RiskGrade estimates are based on exponential weighting of historical data, which makes them
more adaptive to current market conditions than plain standard deviations. When it released the RiskMetrics
methodology, J.P. Morgan revealed a study which demonstrated that exponential weighting significantly
improves forecasting accuracy and responsiveness in extreme market conditions.

The second difference is that RiskGrades have been calibrated to be easier to interpret for the general public,
with a RiskGrade of 100 representing the typical risk of the global equity markets. Standard deviations,
however, do not have such an intuitive reference point: we can easily tell that a standard deviation of 5%
represents more risk than 2%, but it’s not obvious how risky that is (e.g., how risky is that compared to the
risk of a well-diversified equity portfolio?).

1.3.2 Beta

Beta measures how much an individual stock is likely to move with the general market. A beta of 1 means
that a stock will tend to move lockstep with the general market, while a beta of 1.5 means that, on average,
the stock will rise 1.5% for any 1% rise in the stock market, and fall 1.5% with any 1% fall in the stock
market, compared to the risk-free interest rate. Beta can be used to compare the systemic risks of various
stocks: the higher the beta, the more risk a particular stock is likely to contribute to a portfolio of stocks.

While elegant in its simplicity, beta has several limitations which are rooted in its parent theory of the Capital
Asset Pricing Model (CAPM). First, it is only a relative risk measure: beta is only a measure of how a stock
is likely to move relative to an overall stock index, and gives no indication of the stock’s unique volatility
(or the overall stock market’s volatility). Beta can be misleading because two stocks with the same beta
generally have a different unique risk. Second, it only measures incremental systemic risk for a perfectly
diversified portfolio of stocks (i.e., a stock with a beta of 1 could easily contribute twice as much volatility
as the broader stock market, if you have an undiversified portfolio). Third, CAPM focuses only on the risk
premium of equities relative to risk-free assets, does not address fixed income and currency investments, and
consequently, is difficult to apply across asset classes. In sum, we can say that RiskGrades account for both
systematic and unique risk and thus show the whole picture of risk.

1.4 Beyond RiskGradesTM

The RiskGrade measure is a representative and universal scaler of risk for all investment instruments of the
individual investor. However, because investment purpose, time horizon, and attitude toward risk vary across
investors, and the financial market occasionally jumps from quiet to turbulent, we provide even more specific
measures of risk. Among these measures are XLossTM (Loss in Extreme Markets) for short-horizon abnormal

RiskGradesTM Technical Document



4 CHAPTER 1. INTRODUCTION

markets, Chance of Losing Money for short- or long-horizon normal markets, Worst Losing Streak, and
Worst-Case Performance for long-horizon abnormal markets.

In addition to such risk measures, we have devised “warning lights” against potential market crashes. Warning
lights indicate the degree of vulnerability to large market moves and identify portfolio components that can
create the most serious portfolio losses. As warning lights, we provide two stress tests: the Historical Event
Stress Test, based on actual historical events, and the User-Defined Event Stress Test, based on investors’
assumptions.

Furthermore, because each investor has a preferred combination of risk and return, we introduce Return-
Grades, a portfolio optimization tool, and a sector analysis. ReturnGrades is a modified risk adjusted return
for the individual investor to combine risk and return on one dimension. The risk-return optimization tool
adjusts portfolio composition based on RiskGrades and expected return. It either maximizes the expected
return given a predetermined maximum RiskGrade, or it minimizes the RiskGrade given a predetermined
minimum expected return. The optimization tool handles both the overall optimization problem and the
incremental optimization problem based on the current portfolio. The sector analysis provides a tool to
identify concentration of investor’s portfolio and decompose its risk through sectors.

Computing risk measures, performing stress tests, and optimizing portfolios all require years of historical
data. Many recent IPO stocks, however, lack that much historical data, but cannot be excluded from a
portfolio analysis. We therefore designed the Ghost Series Generator and based it on the one-factor model
to construct reasonable proxy data for short-history assets (e.g., IPO stocks) by using their short historical
data and industrial indices.

RiskMetrics



Chapter 2

RiskGradesTM

2.1 What is a RiskGrade?TM

The RiskGradeTM measure is a risk indicator that is based on the volatility of returns. The higher the volatility
of returns, the higher the RiskGrade of an asset. RiskGrade values are available for a wide set of investments
including individual equities, equity indices, mutual funds, bonds, and currencies. RiskGrades are compa-
rable across asset classes in the sense that any asset with a RiskGrade of 800 is twice as volatile as any other
asset with a RiskGrade of 400.

It is important to understand that since RiskGrade values are based on volatility estimates, they vary according
to the base currency of each investor. For a British investor who views the world from a British pound
perspective, having pounds under the mattress is a riskless investment, and hence has a RiskGrade of zero
(from a market/price perspective, not an inflation perspective). For an American investor, having pounds
under the mattress carries currency risk, and thus the RiskGrade of the pound from a U.S. dollar perspective
is greater than zero. Similarly, an American investor who buys a German stock is exposed to two sources of
risk: equity risk and currency risk. Therefore, the RiskGrade of a German stock from the point of view of an
American investor is different from the RiskGrade of the same stock from a German investor’s viewpoint.

RiskGrades are not constant through time. There are times when assets are more or less volatile, leading to
RiskGrades that change through time. To account for rapidly changing market conditions, we recalculate
RiskGrades on a daily basis.

2.2 Calculation of RiskGradesTM

RiskGrades are scaled volatilities, where the scaling factor is chosen to simplify the interpretation of a
RiskGrade. We set a RiskGrade of 100 to be equivalent to an annual volatility of 20%. While the scaling

5



6 CHAPTER 2. RISKGRADESTM

factor is somewhat arbitrary, it can be justified by noting that the market-cap weighted average volatility over
the January 1995–December 1999 period of a group of international equity indices is approximately 20%.1

The constituents of this group and their relative weights are shown in Table 2.1.

Table 2.1:Volatility of Equity Indices

Index Market-Cap Weights, (%) Annualized
Ticker Country Europe Asia/Pacific AmericasVolatility, (%)
AEX Netherlands 2.4 40.52
All Ordinaries Australia 1.3 13.06
ASIN Singapore 0.6 21.32
BEL20 Belgium 1.0 15.49
CAC40 France 3.9 19.80
DAX Germany 4.3 21.10
FTSE100 UK 9.4 15.31
HangSeng Hong Kong 1.4 30.96
HEX Finland 0.6 26.48
IBEX Spain 1.4 20.72
IPC Mexico 0.4 30.08
KOSPI200 Korea 0.5 34.76
Merval Argentina 0.5 37.10
MIB Italy 2.2 23.65
Nasdaq US 10.3 28.11
NIKKEI225 Japan 9.7 22.54
OMX Sweden 1.1 21.09
NYSE US 43.1 13.89
SMI Switzerland 2.7 18.40
TSE100 Canada 2.2 14.80
TWII Taiwan 1.0 23.99
Total 29.0 14.5 56.5 18.85

Table 2.1 also shows the volatility of each index and the market-cap weighted average volatility across all
indices. The volatility is calculated from RiskMetrics methodology by using a 0.97 decay factor and 151
days of historical data. (The methodology is discussed in Section 2.3.) The market-cap weights are based
on market capitalization of December 31, 1998 from London Stock Exchange Statistics.

1The market-cap weighted average volatility is the average of the volatilities of the equity indices with market-cap weights. It is
not the volatility of the global equity portfolio, which is composed of market-cap weighted indices. The portfolio approach results
in a very low volatility because of the large global diversification benefit. Since we cannot expect such global diversification for
individual investors, it is unrealistic to implement the low volatility of the global portfolio as a reference volatility.

RiskMetrics



2.2. CALCULATION OF RISKGRADESTM 7

Figure 2.1 shows the weighted average volatility of the equity indices in the international group over the
January 1995–December 1999 period. The weighted average volatility fluctuated between 10% and 20%,
except for the two abnormal market conditions, when it hit 28% in the Asia Exchange Crisis of July 2, 1997,
and 35% in the Russian Debt Crisis of August 21, 1998.

Figure 2.1:Weighted Average Volatility of Equity Indices
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The most important part of the RiskGrade calculation is estimating the return volatility. Once we have the
volatility, we simply apply a fixed multiplier to obtain the RiskGrade. Equation 2.1 presents the formula
used to calculate the RiskGrade of asseti.

RiskGrade(i) = σi

σbase

× 100 (2.1)

= σi

√
252

0.2
× 100,

whereσi andσbase denote the RiskMetricsR© volatility of asseti and the base volatility, respectively. Multi-

plying
(√

252
0.2 × 100

)
by σi results in a RiskGrade of 100, equivalent to an annual volatility of 20%. Because

RiskMetrics volatilities are a key input into the equations for RiskGrade, we discuss them in detail in the
next section.

RiskGradesTM Technical Document



8 CHAPTER 2. RISKGRADESTM

2.3 RiskMetrics Volatilities

RiskMetrics volatilities are calculated by using an exponentially weighted moving average, where the latest
observations carry the highest weight in the volatility estimate. The exponential weighting scheme allows
volatilities to react faster to shocks and therefore rapidly incorporates changes in the state of events. Following
a turmoil, the volatility estimate decreases exponentially as the recent extreme observations are forgotten. By
contrast, an equally weighted scheme delays the incorporation of extreme events into the volatility estimate,
but once taken into account, their effects persist for long periods of time.

The exponentially weighted volatility for asseti at timet estimate can be written as

σi,t =
√√√√(1 − λ)

∞∑
j=0

λj r2
t−j , (2.2)

whereλ is the decay factor. The returnri,t of asseti at timet is a one-day logarithmic return computed by
ln(Pi,t /Pi,t−1), wherePi,t denotes the price of asseti at timet .

RiskMetrics assumes that the mean value of daily returns is zero. This assumption is unlikely to cause a
large bias in the volatility estimate because the volatility of returns of a single asset dominates that asset’s
expected return in the short term (see theRiskMetrics Technical Document[7], pp. 91–92).

Given that we do not have an infinitely long history of returns, we need to define a cutoff point. Our criterion
for defining the cutoff is to use as many returns as necessary to incorporate 99% of the information contained
in an infinitely long history of returns. We can formalize this idea by observing that the total weight of an
infinitely long history is equal to 1/(1−λ), whereas the weight of a finite series consisting ofn returns is equal
to (1−λn)/(1−λ). Therefore, to incorporate 99% percent of the weight, we need to setn = ln(0.01)/ ln(λ).
Note that the effective number of observations used in the volatility estimate depends on the decay factor
λ — the higher the decay factorλ, the higher the number of observations. Figure 2.2 shows the effective
number of observations as a function of decay factor in an exponentially weighted scheme.

Hence, the actual RiskMetrics volatility estimate is

σi,t =
√√√√ 1 − λ

1 − λn

n∑
j=0

λj r2
i,t−j . (2.3)

For calculating the volatility of a portfolio, we first need to estimate the covariance between all the portfolio
components. The RiskMetrics covariance estimate between assets 1 and 2, based on an exponentially
weighted average is given by Equation 2.4,

RiskMetrics



2.4. CHOOSING A DECAY FACTOR 9

Figure 2.2:Effective Number of Observations as a Function of Decay Factor
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σ12,t =
√√√√ 1 − λ

1 − λn

n∑
j=0

λj r1,t−j r2,t−j . (2.4)

Therefore, the RiskMetrics volatility of the portfolio is

σp,t = √
ωVCVω′, (2.5)

whereω denotes the weights of the portfolio components, and VCV denotes the RiskMetrics variance-
covariance matrix for the components. Note thatσp,t can be used in Equation 2.1 to calculate a portfolio
RiskGradeTM .

2.4 Choosing a Decay Factor

Assuming an average daily return of zero, we can writeE[r2
i,t+1] = σ 2

i,t . Therefore, one means of obtaining
λ is to minimize the average square error1

n

∑n
t=1(r

2
i,t+1 − σ 2

i,t )
2, where the varianceσ 2

i,t is a function ofλ.
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10 CHAPTER 2. RISKGRADESTM

From this methodology it has been found that the optimal decay factorλ is 0.94 for one-day volatility
estimates, and 0.97 for one-month volatility estimates (see theRiskMetrics Technical Document[7], pp. 97–
101).

The choice of decay factor is basically linked to the investor’s time horizon. For individual investors, the
relevant horizon is usually longer than one day and hence a somewhat stable volatility estimate is desirable.
Volatility estimates constructed with a decay factor of 0.97 are more stable than those built with a decay
factor of 0.94. This result is intuitive because the relative weight given to recent observations is lower when
we use a higher decay factor. Since our objective is to provide an intuitive and stable measure of risk, we
chose to use a decay factor of 0.97 in the calculation of RiskGrades. Therefore, the effective number of days
used in a volatility estimate with a decay factor of 0.97 is 151.

2.5 Why Are RiskGradesTM Good Measures of Risk?

The strength of RiskGrades is derived from the ability of RiskMetrics volatilities to predict extreme events.
RiskMetrics volatilities have been used and tested by professionals in financial institutions and regulatory
bodies throughout the world, and have proven to be a consistent and reliable basis for calculating market risk.
It has also been shown that RiskMetrics volatilities produce accurate VaR numbers across various markets
and asset classes.2 Figure 2.3 shows the 95% confidence limits for the Nasdaq index over the 1995–1999
period. You can check how robust the RiskMetrics volatilities are from Figure 2.3 The actual number of
outliers (5.5%) from the 95% confidence interval is very close to the expected number of outliers (5%).

In addition, a recent study by Malz [6] shows that RiskMetrics volatilities contain predictive information
regarding future large-magnitude returns. Furthermore, the predictive power of RiskMetrics volatilities is
sometimes comparable to that of implied volatilities, as shown in Figure 2.4, in which the probabilities of
a 5% devaluation of the Mexican peso over a one-month period are computed from both RiskMetrics and
implied volatilities. Note how both probability estimates jump up at the same time and by about the same
amount before an extreme event.

2.6 RiskImpactTM

To determine the contribution of a single asset to the total portfolio volatility, we introduce the RiskImpactTM measure.
We define RiskImpact as a Marginal RiskGrade. In other words, RiskImpact pertains to a specific asset and
reflects how the RiskGrade of an investor’s portfolio would change if the investor were to sell that asset and
keep the cash proceeds. We can express the RiskImpact of asseti as in Equation 2.6,

2See theRiskMetrics Technical Document[7] for a general discussion on the accuracy of RiskMetrics volatilities, and Finger [1]’s
discussion for a test of RiskMetrics volatility forecasts on emerging markets data.
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Figure 2.3:Confidence Limits for Nasdaq Returns
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RiskImpact(i) = RiskGrade of the entire portfolio− RiskGrade of the portfolio without asset(i). (2.6)

We can also report the RiskImpact as a percentage of the portfolio RiskGrade:

% RiskImpact(i) = RiskImpact(i)

RiskGrade of the entire portfolio
× 100. (2.7)

2.7 An Example of RiskGradesTM

In this section we provide an example of how the RiskGrade and RiskImpact measures are interpreted and
used to assess portfolio risk. We use this example throughout the document. A U.S.-based investor owns
a portfolio worth USD 20,000 at the end of December 31, 1999. The portfolio consists of USD 10,000 of
Coca-Cola shares (NYSE:KO) and USD 10,000 of Cisco Systems shares (Nasdaq: CSCO). Table 2.2 shows
the RiskGrade and RiskImpact values of the two stocks and their portfolio.

RiskGradesTM Technical Document
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Figure 2.4:Probability of a 5% Devaluation in the Mexican Peso
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Table 2.2:RiskGrade and RiskImpact Values on Dec. 31, 1999

Asset Price, (USD) MV, (USD) RiskGrade RiskImpact, (%)
Coca-Cola 58 1/4 10,000 188 28
Cisco 107 1/8 10,000 179 25
Div. Benefit ... ... 59 ...
Portfolio ... 20,000 125 ...

Coca-Cola’s RiskGrade is larger than Cisco’s. On an absolute basis, how much riskier is the investment in
Coca-Cola compared to the investment in Cisco, based on annual volatility? Since Coca-Cola’s RiskGrade
exceeds Cisco’s by 9, and a RiskGrade of 100 is equivalent to an annual volatility of 20%, Coca-Cola is more
volatile than Cisco by an annual volatility of 1.8% (= (9 × 20%)/100).

Table 2.2 also shows how the diversification benefit reduces the portfolio’s RiskGrade to a value that is less
than the sum of the component RiskGrades.

RiskMetrics



2.7. AN EXAMPLE OF RISKGRADESTM 13

RiskGrade Div. Benefit=
N∑

i=1

ωiRiskGrade of asset(i) − RiskGrade of the portfolio, (2.8)

whereN denotes total number of assets in the portfolio, andωi denotes the weight of asseti.

The RiskImpact values of Coca-Cola and Cisco are 28% and 25%, respectively, which means that if the
investor closes her Coca-Cola position (sells all Coca-Cola stocks in her portfolio and keeps the cash pro-
ceeds), she can reduce her portfolio’s risk by 28%. Why is the sum of the RiskImpact values of all portfolio
components less than 100%? As long as a diversification benefit exists, it reduces portfolio risk such that the
sum of RiskImpact values is less than 100%.

Figure 2.5 plots a three-year history of RiskGrades for Coca-Cola, Cisco, and the portfolio. It is worth
noting that RiskGrade is a time-variant parameter which is updated daily by RiskMetrics to account for new
information pertaining to an individual asset and to the financial market as a whole.

For example, on July 16, 1998, Cisco’s RiskGrade fell to a minimum of 139, then jumped to a maximum of
367 on October 15, 1998. In three months, in the midst of the Russian Crisis of August 21, 1998, Cisco’s
RiskGrade jumped by almost a factor of three.

Figure 2.5:Three-Year History of RiskGrades
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2.8 RiskGradesTM of Bonds and Options

In this section, we discuss issues related to the calculation of RiskGrades for bonds and options. Computing
the volatility of equities is somewhat straightforward because we can observe consistent equity prices with
only minor adjustments of stock splits and dividends. It is impossible, however, to observe daily bond and
option prices under a constant maturity, strike price, and volatility. Thus, we need to construct an artificial
historical return series for bonds and options by using a simple valuation model that is controlled by a fixed
condition.

For example, if an investor holds a U.S. 10-year Treasury bond in her portfolio, she needs to know its historical
daily return at a constant maturity of ten years. To obtain this information, we can construct an artificial
return series by using the historical daily-yield series of the 10-year Treasury bond as follows:

1. Calculate the price of the bond from its discounted future coupons, and the maturity value of the bond
from its yield at maturity:

Pt =
n∑

i=1

c

(1 + 0.5yt )i
+ M

(1 + 0.5yt )n
, (2.9)

wherePt denotes the bond price at timet , c is the semiannual coupon interest,yt is the yield to maturity
at timet , n is the number of periods (number of years times two), andM is the bond value at maturity.

2. Compute the one-day capital gain from the change in bond price:

Capital Gaint = ln(Pt) − ln(Pt−1). (2.10)

3. Compute the one-day accrued interest return by converting the annual yield to a one-day yield:

Accrued Interestt = yt

252
. (2.11)

4. Sum the capital gain and the accrued interest return to calculate the total one-day return of the bond.

5. Construct the artificial return series for the bond, then calculate the RiskGrade as explained in Sec-
tions 2.2 and 2.3.
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Table 2.3:RiskGrades of U.S. Treasury Bonds on Dec. 31, 1999

Maturity 3-month 6-month 1-year 10-year 30-year
RiskGrade 1 2 3 26 43

Table 2.3 shows the RiskGrades for U.S. Treasury bonds of various maturities. The 10- and 30-year Treasury
bonds each have an 8% annual coupon. As we expect, the longer-maturity bonds have higher volatilities and
thus, higher RiskGrades.

Figure 2.6 plots a three-year history for the RiskGrades of Treasury bonds of various maturities. Like the
RiskGrades of equities, the RiskGrades of bonds are time-variant parameters. Although they move in the
same direction because of the highly correlated yields, their swing becomes wilder as bond maturity increases.

Figure 2.6:RiskGrades of U.S. Treasury Bonds
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In the case of options, constructing artificial return series is more complicated than for bonds because we
need to consider many factors that affect an option’s value. Some of these factors must be fixed at today’s
values, while other factors must be simulated according to their historical evolution. We use four basic steps
to construct return series:

1. Calculate today’s value of the option by using today’s factors. The value of the option is a function

RiskGradesTM Technical Document



16 CHAPTER 2. RISKGRADESTM

of the underlying asset price, strike price, time of expiration, volatility of the underlying asset price,
risk-free interest rate, and dividend rate as follows:

Ct = F(St , X, T , σt , it , D), (2.12)

whereCt denotes the price of the option at timet , St is the underlying asset price at timet , X is the
strike price,T is the time of expiration,σt is the volatility of the asset price at timet , it is the risk-free
interest rate at timet for an investment maturing at timeT , andD is the dividend rate.

2. Compute the artificial price based on the historical price changes of the underlying asset and the risk-
free interest rate. We fix the strike price, time of expiration, volatility of underlying asset price, and
dividend rate at today’s values:

Ct−i = F(St(1 + rst−i), X, T , σt , it (1 + rit−i), D), (2.13)

whererst−i denotes the return of the underlying asset at timet − i, andrit−1 denotes the change in
the risk-free interest rate at timet − i.

3. Calculate the artificial historical returnrct−i of the option by subtracting the option’s value based on
today’s price from the option’s value based on its historical price change:

rct−i = ln(Ct−i) − ln(Ct). (2.14)

4. Construct the artificial return series for the option, then calculate the option’s RiskGrade in the same
manner as for equities, as explained in Sections 2.2 and 2.3.

Our method for handling options in a portfolio is a hybrid of historical simulation and parametric (delta-
gamma) methods; i.e., the artificial return series of an option is calculated by valuing option prices based
on the historical change in the values of the risk factors, but it is aggregated into the portfolio according to
the parametric method. The hybrid method has the advantage of being able to incorporate the non-linear
valuation of options while allowing the portfolio RiskGrade to be calculated from the parametric method of
variance-covariance using the exponentially-weighted moving-average scheme.

Table 2.4 shows the RiskGrades of two portfolios composed of Cisco options. Each portfolio contains one
unit of Cisco equity. The first portfolio, however, contains one unit of an at-the-money call option, while
the other portfolio contains one unit of an at-the-money put option. As we expect, Cisco equity and the call
option are highly correlated and the diversification benefit is relatively small. By contrast, the put option

RiskMetrics
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Table 2.4:RiskGrade and RiskImpact Values of Options on Dec. 31, 1999

Portfolio Asset Price, (USD) RiskGrade RiskImpact, (%)
Call Option Cisco 107 1/8 179 71

Cisco Call Option 18 1/8 665 29
Div. Benefit ... 22 ...
Portfolio 125 1/4 227 ...

Put Option Cisco 107 1/8 179 41
Cisco Put Option 11 3/4 600 -58
Div. Benefit ... 119 ...
Portfolio 118 7/8 102 ...

efficiently hedges the investment. Its diversification benefit is large and its RiskImpact is negative, which
means that if you close your put option position, your total portfolio risk will increase significantly.

Figure 2.7 plots a three-year history of the RiskGrades of various investments in Cisco: equity, a call option, a
put option, and two option portfolios. The RiskGrades let you easily determine how the call option leverages
your investment and results in higher risk, and how the put option hedges your investment and results in
smaller risk.

2.9 RiskGradesTM of Leveraged Portfolios

Before concluding the discussion of RiskGrades, we add one brief section to explain how well RiskGrades
measure the risk of portfolios leveraged by margin debt and short sale.3

How does leverage (that is, using borrowed money) affect the risk of your portfolio? Intuitively, we know
that buying securities on margin debt (i.e., borrowing money to buy securities) or short sale (i.e., selling
securities without holding them) increases the risk and return potential of our portfolios. Using RiskGrades,
we can show how to quantify the effects of different leverage strategies.

The upper half of Table 2.5 shows two leveraged portfolios by margin debt. In this example, we compare
portfolios that contain the same value of stock, but have different net values with respect to margin debt.
Assume that the first portfolio (Portfolio 1) containing USD 10,000 of Coca-Cola stock has been purchased
entirely in cash, whereas the second portfolio (Portfolio 2, upper center of table) has been purchased with a
combination of 50% cash and 50% margin debt. The third portfolio (Portfolio 3, upper right of table) was
purchased with a combination of 1% cash and 99% margin debt.4

3Part of this section was written by Alvin Lee of RiskMetrics.
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Figure 2.7:RiskGrade Values of Options
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Table 2.5:RiskGrades of Margin Debt and Short Sale on Dec. 31, 1999

Asset MV, (USD) RG RI, (%) MV, (USD) RG RI, (%) MV, (USD) RG RI, (%)
Cash Purchase (Portfolio 1) 50% Margin Debt (Portfolio 2) 99% Margin Debt (Portfolio 3)

Coca-Cola 10,000 188 100 10,000 188 100 10,000 188 100
Cash 0 0 ... -5,000 0 0 -9,900 0 0
Div. Benefit 0 ... ... ... 0.00 ... ... 0 ...
Portfolio 10,000 188 ... 5,000 376 ... 100 18808 ...

Cash Purchase (Portfolio 1) 50% Short Sale (Portfolio 4) 99% Short Sale (Portfolio 5)
Coca-Cola 10,000 188 100 10,000 188 58 10,000 188 33
Cisco 0 ... ... -5,000 179 12 -9,900 179 30
Div. Benefit 0 ... 127 ... ... 9759 ...
Portfolio 10,000 188 ... 5,000 428 ... 100 26741 ...

4In practice, 99% margin debt and 99% short sale are extreme cases since brokerage companies usually do not allow individual
investors more than 65–75% margin debt or short sale without additional collateral.

RiskMetrics
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Portfolio 1 contains USD 10,000 of Coca-Cola stock and zero cash. The portfolio’s net market value is USD
10,000, and its RiskGrade of 188 is the same as Coca-Cola’s RiskGrade. Portfolio 2 contains USD 10,000
of Coca-Cola shares and USD -5,000 of cash or margin debt, resulting in a net market value of USD 5,000
and a RiskGrade of 376. In Portfolio 3, USD 10,000 worth of Coca-Cola stock and USD -9,900 of cash or
margin debt result in a net market value of USD 100 and a RiskGrade of 18808, or 3761% annual volatility.

Is the third portfolio as risky as its RiskGrade of 18808 indicates? Note that for leveraged portfolios, the
RiskGrade measures the risk of the net value of the portfolio, not the value of the securities in the portfolio.
While all three portfolios have the same amount of securities outflow, the net investment value of Portfolio
2 is only half that of the non-leveraged portfolio; for Portfolio 3, it is only one one-hundredth of the value
of the non-leveraged portfolio. Therefore, a return calculated from the net investment value swings more in
the case of leveraged portfolios.

In general, the RiskGrade of a leveraged portfolio is calculated as follows:

Leveraged RiskGrade= RiskGrade of Securities× Leverage Ratio (2.15)

= RiskGrade of Securities×
[

Securities Value

(Securities Value - Margin Debt)

]
.

The lower half of Table 2.5 shows two leveraged portfolios by short sale. In this example, we compare
portfolios that contain the same value of stock, but differ in net value because of the short sale. Assume
Portfolio 1, (containing USD 10,000 of Coca-Cola stock) has been purchased entirely with cash, whereas
Portfolio 4 (lower center of table) has been purchased with a combination of 50% cash and 50% short sale,
and Portfolio 5 (lower right of table) with a combination of 1% cash and 99% short sale.

While the increase in RiskGrade from short sale is similar to the increase from margin debt, there is no simple
equation, such as Equation 2.15, for calculating the RiskGrade of a leveraged portfolio by short sale. The
reason is that the diversification benefit depends on the correlation between long and short securities.

This section shows how leverage increases the RiskGrade (and potential return) of a portfolio for a given
investment of securities. As with most things in life, additional potential returns come with additional risk.
Also worth noting is the fact that investors who make use of margin debt or short sales must contend not
only with increased risk, but also with margin calls. Margin calls occur when the institution that extends the
margin debt and short sale requires the investor to either deposit more cash into his account or sell securities
to reduce the leverage in the portfolio. Investors may calculate the probability of a margin call by using
another risk measure called “Chance of Losing Money,” as explained in Section 3.2. As investors replace
the initial investment value with the trigger value of a margin call, the Chance of Losing Money shows the
probability of the current portfolio value shrinking under the trigger value of a margin call.

RiskGradesTM Technical Document
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Chapter 3

Additional Risk Measures

The RiskGradeTM statistic is a good measure of risk. It is a representative and universal scaler of risk for
all types of investment instruments. However, for specific situations, such as a relatively longer investment
horizon or abnormal market conditions, we need other measurements in order to draw the whole picture
of risk. For this purpose, we have devised several statistics to supplement RiskGrade: XLossTM , Marginal
XLoss, Chance of Losing Money, Worst-Case Performance, and Worst Losing Streak.

3.1 XLossTM

We define the XLoss value as the one-day expected loss that exceeds the loss at the fifth percentile (or a
user-defined threshold) of the Profit and Loss (P&L) distribution. Intuitively, one can think of one-day XLoss
as the average of the worst-case, one-day losses observed in each month (i.e., once among twenty days). We
can also think of XLoss as an indicator of the average loss we would experience in an extreme scenario.

We can calculate XLoss as

XLoss= E[P&L|P&L < z] = Portfolio Value

0.05

∫ z

−∞
xf (x)dx, (3.1)

where

z :
∫ z

−∞
f (x)dx = 0.05, (3.2)

andf (·) is the density function of returns. The next step is to determine the density function either from the
parametric method or from historical simulation.
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3.1.1 Parametric Method versus Historical Simulation

The logic of when to use the parametric method and when to use historical simulation depends on the
characteristics of the risk measurement.

The parametric method can be easily scaled up to longer horizons by use of the square root of time rule,
because we assume the return process to be a random walk. We therefore require a small amount of data.
The parametric method, however, cannot account for the fat tail of the return distribution, and consequently,
should be used for short or long horizons, and for normal market conditions.

On the other hand, historical simulation can incorporate the fat tails of the return distribution, but cannot be
scaled up to longer horizons because we do not assume the random walk process. Therefore, it has a heavy
data burden for long-horizon calculations. For example, to calculate a quarterly return distribution, we need
more than 100 historical quarterly returns (i.e., 25 years of returns). Furthermore, we cannot use overlapping
data to reduce the data burden because the overlap leads to false autocorrelations. For example, if on one
day the return suffers a big drop, all consecutive returns which include that day show an equally big drop.1

Thus, historical simulation is better suited for short horizons and abnormal market conditions.

Since XLoss is a risk measure for the abnormal market condition, it concerns only the worst-case returns
below a certain threshold (e.g., worst first or fifth percentile). Therefore, the computation of XLoss heavily
depends on the left tail of the return distribution. Figure 3.1 plots the Coca-Cola’s return distributions
calculated from the parametric method and from historical simulation. Clearly, the return distribution based
on the parametric method cannot account for the fat tail of historical returns. Consequently, the XLoss values
calculated from the parametric method may underestimate actual risk.

Using the previous example, let us compare the XLoss values obtained from the parametric method and from
historical simulation. Table 3.1 shows the XLoss values at the first and fifth percentile thresholds.

At the fifth percentile threshold, the parametric XLoss underestimates loss by less than 10%, whereas at the
first percentile threshold it underestimates loss by a significant amount. Therefore, our choice between the
parametric method and historical simulation involves a trade-off. While the historical simulation for XLoss
may account for the fat tails of the density function, it is unwieldy for longer-horizon measurements. The
opposite is true for the parametric method. Since the accuracy of the XLoss measure depends heavily on
the left tail of the return distribution and we have other good risk measures (Worst-Case Performance and
Worst Losing Streak) for long-horizon abnormal markets, we use historical simulation to calculate XLoss
and restrict the time horizon to span from one to five days.

We also need to determine the range of historical data and the method for calculating a portfolio’s XLoss. The
choice of the range of historical data depends on the XLoss threshold. If the threshold is the fifth percentile,
one year of daily data (i.e., 252 observations) is enough to describe an abnormal market condition (i.e., 13
observations). If the threshold is the first percentile, one year of daily data is not enough and at least five
years of daily data is required to describe an abnormal market condition.

1See theLongRun Technical Document[5] pp. 125–126 for more information about the problem of overlapping data.
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Figure 3.1:Return Distributions Based on the Parametric Method and Historical Simulation
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Table 3.1:XLoss Values Based on the Parametric Method and Historical Simulation

Asset Parametric (A, USD) Historical (B, USD) A/B, (%)
1st percentile:
Coca-Cola -472 -641 74
Cisco -664 -918 72
Div. Benefit -252 -416 ...
Portfolio -884 -1,144 77

5th percentile:
Coca-Cola -353 -382 92
Cisco -532 -588 90
Div. Benefit -182 -216 ...
Portfolio -704 -754 93

For the portfolio approach, we use the PortfolioAggregation method to construct an artificial historical return
series for the portfolio based on the current weights and historical returns of the portfolio components.

RiskGradesTM Technical Document



24 CHAPTER 3. ADDITIONAL RISK MEASURES

Zangari [8] summarizes Portfolio Aggregation in three basic steps:

1. Construct a time series of daily portfolio returns from a current set of portfolio positions and daily
returns on individual securities.

2. Treat the portfolio return time series as a dynamic process.

3. Determine risk measures by fitting a statistical model directly to the time series of daily portfolio
returns.

The critical problem of Portfolio Aggregation is the heavy computational resources that are required to
calculate the daily P&L of nonlinear instruments in the portfolio. However, the problem is not serious for
individual investors, as their portfolios generally contain small numbers of nonlinear instruments.

For more information about the Portfolio Aggregation method compared with the variance-covariance para-
metric approach and historical simulation, refer to Zangari [8].

The diversification benefit in Table 3.1 shows the reduction in the portfolio’s XLoss compared to the sum of
the XLoss values of the portfolio components.

XLoss Div. Benefit=
N∑

i=1

ωiXLoss of asset(i) − XLoss of the portfolio, (3.3)

whereN denotes the total number of assets in the portfolio andωi denotes the weight of asseti.

3.1.2 Marginal XLoss

Similar to RiskImpactTM indicating the contribution of an asset’s RiskGrade to the RiskGrade of its portfolio,
Marginal XLoss shows the contribution of each asset in the portfolio to the total XLoss of the portfolio. The
Marginal XLoss for a specific asset reflects how the portfolio’s XLoss would change if the investor were to
sell that asset and keep the cash proceeds. We can also define Marginal XLoss as

Marginal XLoss(i) = XLoss of the entire portfolio− XLoss of the portfolio without asset(i). (3.4)

We can also report the Marginal XLoss as a percentage of the XLoss of the entire portfolio:
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% Marginal XLoss(i) = Marginal XLoss(i)

XLoss of the entire portfolio
× 100. (3.5)

In the previous example, the Marginal XLoss values for the Coca-Cola and Cisco positions are 21.99% and
49.36%, respectively, which means that if the investor closes her Coca-Cola position, she can reduce her
portfolio’s XLoss by 21.99%. As long as the diversification benefit exists, it reduces the risk of the portfolio
such that the sum of the Marginal XLoss values contributed by each of the portfolio components is always
less than 100%.

3.2 Chance of Losing Money

The Chance of Losing Money shows the probability with which the value of an investment after a 1-, 3-, or
12-month horizon (or a user-defined investment horizon) can drop below its initial value (or a user-defined
level). The method for computing the Chance of Losing Money runs opposite to the method for computing
XLoss. While XLoss indicates the average shortfall that corresponds to a certain level of probability, the
Chance of Losing Money provides the probability with which the P&L of an investment can fall below a
certain level of shortfall.

We can calculate the Chance of Losing Money as

Chance of Losing Money= Prob[P&Lt,k < z] =
∫ z

−∞
f (xt,k)dx, (3.6)

where P&Lt,k = xt,k denotes thek-day P&L from timet andf (·) is the P&L density function. Parameterz

is the threshold of the shortfall.

For short horizons, the Chance of Losing Money is a meaningless measure, given that the overnight Chance
of Losing Money is always 50% when a zero expected return is assumed. Therefore, the Chance of Losing
Money should be used as a risk measure for long-horizon investments. At long horizons, we avoid historical
simulation, as it requires large amounts of data, and instead, use the parametric method to determine the
density function of the returns.

Specifically, we assume that thek-day return follows a normal distribution, along with thek-day expected
return and volatility, which are scaled up from the one-day expected return and volatility; i.e.,

rt,k ∼ N(kµt,1, kσ 2
t,1), (3.7)
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wherert,k denotes thek-day return from timet . Parametersµt,1 andσt,1 denote the one-day expected return
and volatility, andN(·, ·) denotes a normal distribution.

Then, Equation 3.6 for the Chance of Losing Money expressed in terms of P&L can be rewritten in terms of
returns as follows:

Chance of Losing Money= Prob[rt,k < rz] =
∫ rz

−∞
8(rt,k)dr, (3.8)

whererz denotes the return that falls above the shortfall threshold (z), andφ denotes the normal probability
density function (PDF) described in Equation 3.7.

The volatility parameter (σt,1) is computed from an asset’s historical returns, but its calculation is somewhat
different from that of RiskGrade. Since RiskGrade measures risk at relatively short horizons, it should be
time-variant, following the recent behavior of the return. Thus, we put a higher weight on the more recent
returns (i.e., the decay factor is less than one), which reduces our requirement for data (i.e., 151 days for a
decay factor of 0.97). However, since the Chance of Losing Money is valid for the relatively long horizon, it
should represent the long-term behavior of the return. Therefore, we assign the same weight to all historical
returns and use a long history of returns — as long as five years.

While RiskGrade assumes the expected return parameter (µt,1) to be zero because of the short horizon, the
Chance of Losing Money no longer assumes a zero expected return. In addition, while RiskMetrics provides
robust forecasts of volatility, no current methodology can provide robust forecasts of an expected return. To
circumvent this problem, we take the expected return to be an average return that we compute from a long
history of data. It is important to bear in mind that the average historical return is only a reference value, and
the individual investor still needs to define her expected return.

The Chance of Losing Money decreases as the expected return rises and the volatility drops. Using the
Coca-Cola and Cisco example, Figure 3.2 shows how the expected return (or long-term trend) affects the
Chance of Losing Money.

Each graph in Figure 3.2 shows three curves that plot the mean expected return and the 99% confidence
intervals. The area below the zero-return line (horizontal dash line) indicates the Chance of Losing Money
based on today’s investment. At the one-year horizon, the Chance of Losing Money from the investment in
Cisco is less than from the investment in Coca-Cola, i.e., 7.20% compared to 33.41%. While Cisco’s annual
volatility (43.65%) is greater than Coca-Cola’s (28.42%), its annual expected return (63.78%) is much greater
than Coca-Cola’s (12.18%).

3.3 Worst-Case Performance

So far, we have established that XLoss is a risk measure for the short-horizon abnormal market, and the
Chance of Losing Money is for the long-horizon normal market. How, then, do we measure risk for the
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Figure 3.2:Chance of Losing Money
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long-horizon abnormal market condition? The long-horizon abnormal market is the Achilles Heel of risk
management methodology. Any kind of precise approach for determining the tail distribution of long-term
returns requires tremendous amounts of data.

In this section and the next, we introduce two empirical types of risk measures for the long-horizon abnormal
market. While empirical measures are not based on objective statistical inference, they still provide practical
information about risk.

For example, if an investor is concerned that a 5% worst return during a particular quarter represents her
losses, she can instead determine her potential losses from the Worst-Case Performance measure for any
quarter during the last five years. Since there is a total of 20 quarters in the last five years, she can expect to
experience the same Worst-Case Performance once in every 20 quarters.

Worst-Case Performance is the amount of loss (base currency or percent) that can occur if the worst 3-, 6-,
or 12-month horizons (or a user-defined horizon) during a given historical period were to occur again. To
obtain a Worst-Case Performance figure, we search for the worstk-period return in a given set of historical
daily data by using a fixed-size, rolling, daily-updated window, and then apply the worst return to today’s
portfolio. We can calculate thek-period Worst-Case Performance as

Worst-Case Performance= Min [rt−i,k, rt−(i−1),k, ..., rt−(k+1),k, rt−k,k], (3.9)
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where, Min denotes the minimum operator, andi denotes the total number of daily historical data points.

The method for calculating thek-period returnrt,k for the Worst-Case Performance measure differs from the
methods used to calculate thek-period returnrt,k for other risk measures. (The same is true for calculating the
k-period return for the Worst Losing Streak measure, i.e., the amount of loss that would occur if the largest
drop in asset price, from peak to trough, were to occur again. See Section 3.4 for a detailed discussion.) For
the other risk measures, we use a logarithmic return, computed from ln(Pt+k/Pt), since it is additive and
easily scaled up to longer terms. The logarithmic return is similar to the absolute return (Pt+k − Pt)/Pt )
for small changes in the return. For large changes, however, the two methods provide very different results.
Specifically, if an asset price suffers a big drop, the logarithmic return overestimates the actual drop. For
example, if a stock price drops from 100 to 50, the absolute return is -50%, while the logarithmic return is
-69.31%. Since Worst-Case Performance (and Worst Losing Streak) are typically used to report large drops
in asset price, we use the absolute return to avoid the overestimation that is inherent to the logarithmic return.

Using the Coca-Cola and Cisco assets from our example, we show in Table 3.2 their Worst-Case Performance
figures for a single year (252 business days) in the last five years.

Table 3.2:One-Year Worst-Case Performance

Worst-Case Starting Ending
Asset Performance, (%) date price date price
Coca-Cola -28.97 14-Jul-1998 86.65 14-Jul-1999 61.55
Cisco -11.46 26-Apr-1996 11.64 25-Apr-1997 10.31
Portfolio 4.75 07-Oct-1997 40.32 07-Oct-1998 42.24

In Coca-Cola’s case, the worst one year started on July 14, 1998 at USD 86.65 and ended on July 14, 1999
at USD 61.55, which is marked by the dark area in Figure 3.4. The worst one year was determined by using
a fixed-size 252-day window, rolling and daily updated. The worst one-year return was calculated from
the absolute return to be -28.97%. The Worst-Case Performance for the portfolio was computed from the
Portfolio Aggregation method explained in Section 3.1.

3.4 Worst Losing Streak

The Worst Losing Streak is another empirical type of risk measure for the long-horizon abnormal market.
We define it as the amount of loss (base currency or percent) that would occur if the largest drop in asset
price, from peak to trough, during the last five years were to occur again. The definition is similar to that of
Worst-Case Performance, except that no predetermined time horizon is required. Therefore, the worst period
is selected not from fixed-period windows, but from flexible peak-to-trough windows.
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Figure 3.3:One-Year Worst-Case Performance, Coca-Cola
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We can express the Worst Losing Streak as

Worst Losing Streak= Min [ Min [rt−i,1, rt−i,2, ..., rt−i,i−1, rt−i,i],
Min [rt−(i−1),1, rt−(i−1),2, ..., rt−(i−1),i−2, rt−(i−1),i−1],
...,

Min [rt−2,1, rt−2,2],
Min [rt−1,1] ], (3.10)

where Min denotes the minimum operator, andi denotes the total number of daily historical data points.

When we search for the largest drop from peak to trough, we ignore the local peaks and troughs. Figure 3.4
plots Coca-Cola’s Worst Losing Streak, which starts on July 14, 1998 at USD 86.65 and ends on Octo-
ber 4, 1999 at USD 47.44. Within this period are several local peaks and troughs but they are ignored, as the
difference in the returns on July 14, 1998 and October 4, 1999 is the largest among them.

Table 3.3 shows the Worst Losing Streak during the last five years for our Coca-Cola and Cisco example. We
calculate returns by using the absolute method and apply the Portfolio Aggregation method to the portfolio.
It is worth noting that for the same historical sample, the Worst Losing Streak is always worse than the
Worst-Case Performance because it does not have a fixed investment horizon.
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Figure 3.4:Worst Losing Streak, Coca-Cola
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Table 3.3:Worst Losing Streak

Worst Losing Starting Ending
Asset Streak, (%) date price date price
Coca-Cola -45.24 14-Jul-1998 86.65 04-Oct-1999 47.44
Cisco -38.06 21-Jan-1997 16.64 25-Apr-1997 10.31
Portfolio -28.88 15-Jul-1998 59.19 01-Oct-1998 42.09
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Chapter 4

Stress Tests

RiskGradesTM and other measures introduced in Chapters 2 and 3 were designed to be intuitive and universal
market risk indicators for the individual investor. Their underlying analytics have enabled professional risk
managers to reliably measure market risk. As with all risk forecasts, however, RiskGrades and the additional
risk measures have the limitation of being based only on historical market data. They are not a crystal ball
that can forecast hidden risks, such as events. Observing historical return data gives no clues about when
the next major earthquake, political scandal, or war could derail the markets. To capture such event risks,
investors should complement statistical analysis with rigorous stress testing.

Stress tests are a common counterpart to the objective models used for day-to-day risk monitoring. Examples
of the objective models are VaR and RiskGrades. The objective models typically forecast worst-case losses
conditional on markets behaving generally as they have in the recent past. To make accurate forecasts, these
models rely on a relatively short (one year at most) history of market factor returns. While certain models
extrapolate from these returns and forecast losses greater than those observed in the historical period, the loss
forecasts are always restricted by the historical returns. Stress tests are point estimates of portfolio losses
based on market factor returns that have never occurred, or that occurred outside the relevant historical period
for the model. Stress tests complement the objective model forecasts by providing a notion of losses deemed
implausible by the model, but which certainly could occur.

Generically, stress tests involve specifying adverse market moves (scenarios) and revaluing the portfolio
under these moves (Laubsch [4]). To specify scenarios, it is first necessary to select the market factors (the
core assets) to be stressed, then define the amount by which to stress them and the time period over which the
stress move will take place. For the remaining (peripheral) assets, there are a number of methods to specify
the moves that would coincide with moves in the core assets.

The simplest specification for peripheral asset moves is to simply assume no change (call this the “zeroed-
out” stress test). A second specification (the predictive stress test) utilizes current estimates of volatility and
correlation to estimate the conditional expectation of a peripheral asset move, given the stress moves in the
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core assets (see Kupiec [3] for more details). A third specification (historical stress test) applies the moves
in the peripheral assets that have coincided with large moves in the core assets historically. We summarize
the three stress test methodologies in Table 4.1.1 In this document, we discuss two types of stress tests: the
User-Defined Event(or Hypothetical Event), which is based on the predictive stress test, and the Historical
Event, which is based on the historical stress test.

Table 4.1:Alternative Stress Tests

Stress Test Return of Peripheral AssetsBenefit Drawback
Zeroed-out Zero return Implementation is quite

easy
Ignoring co-movement is
unrealistic

Predictive Expected return based on
correlation

Idiosyncratic errors are av-
eraged out

Impossible to incorporate
correlation breakdown

Historical Actual return of the specific
historical event

The stress condition is eas-
ily incorporated

Idiosyncratic errors of the
historical event cannot be
removed

4.1 User-Defined Events

The User-Defined Event Stress Test shows the amount of loss (base currency or percent) that could occur
if the user-defined crisis were to happen again today. The User-Defined Event Stress Test is based on the
predictive stress test, which computes the expected returns of peripheral assets in an event by using their
historical correlations and volatilities.

Predictive stress tests use the conditional expectation of the returns of the peripheral assets, given that the
return of the core asset (e.g., the USD S&P500) falls by a predetermined level (e.g., -30%). We rely on a
linear relation between the returnsry,t of the peripheral assets and the returnsrx,t of the core assets:

(
ry,t − µy

σy

)
= ρ

(
rx,t − µx

σx

)
+

√
(1 − ρ2)εt , (4.1)

whereεt is a random error term with zero mean and unit variance. The conditional expectation of the
peripheral asset’s return, given the core asset’s return, is then

1See Kim and Finger [2] for an in-depth comparison of the stress test methodologies.
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E(ry,t |rx,t ) = µy −
(

ρσy

σx

)
µx +

(
ρσy

σx

)
rx,t . (4.2)

Usually, we can assume that the user-defined event happens within a short period of time such that the
expected returns of the core and peripheral assets (µx andµy) are close to zero. Then, Equation 4.2 is simply
expressed as

E(ry,t |rx,t ) = βxrx,t , (4.3)

whereβx is (ρσy)/σx .

Then, the individual asset price movement during the event is determined only by itsβ. The larger theβ, the
larger the drop. We apply the stress test to the previous example in which the S&P 500 drops 30%. Table 4.2
shows the estimatedβ based on one year of historical returns and the expected return in the event. Cisco’sβ

is three times larger than Coca-Cola’s, so that loss from investments in Cisco is three times greater than the
loss from investments in Coca-Cola.

Table 4.2:Stress Test for 30% Drop of S&P 500

Asset β Expected Return, (%)
Coca-Cola 0.56 -16.92
Cisco 1.64 -49.19
Portfolio 1.10 -33.05

4.2 Historical Events

The Historical Event Stress Test shows the amount of loss (base currency or percent) that could occur if a
specific historical crisis event were to occur again. Examples of historical events are the 1987 Stock Market
Crash (October 19, 1987), Gulf War Crisis (January 16, 1991), Mexican Peso Crisis (December 14, 1994),
Asian Crisis (July 2, 1997), Russian Crisis (August 21, 1998), and the Brazilian Crisis (January 13, 1999).
The Historical Event Stress Test can eliminate many of the subjective assumptions by specifying all of the
asset price movements based on the actual events. Each historical event, however, has many idiosyncratic
properties which are not averaged out.
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Figure 4.1:Black Monday, 1987

10/10 10/15 10/20 10/25 10/30
2

2.5

3

3.5

4

4.5

5

5.5

6

pr
ic

e
S&P500   
Coca−Cola

It is not an easy process to decide upon the calendar dates of an historical event. For example, the 1987
Stock Market Crash happened on October 19, 1987, the so-called Black Monday. However, the U.S. stock
market started sliding on the previous Friday of October 16, 1987. As we can see in Figure 4.1, the S&P 500
dropped about 5% on that Friday. Therefore, there are some controversies about whether the crash started
on Monday or on Friday. The end of the crash is just as unclear, because within one week the stock market
recovered almost half of the drop it experienced on Black Monday. While the convention is five business
days (one week) or one month after the event, the period of a historical crisis should be determined event by
event.

Table 4.3 shows the result of an Historical Event Stress Test for the preceding example of the stock market

Table 4.3:Stress Test for the 1987 Stock Market Crash

Asset Oct. 16–Oct. 19 Oct. 19 Oct. 19–Oct. 23 Oct. 19–Nov. 18
S&P 500 -28.20 -22.90 -13.01 -14.09
Coca-Cola -35.51 -28.36 -1.87 -3.45
Cisco -46.35 -37.65 -21.38 -23.16
Portfolio -40.93 -33.00 -11.63 -13.31
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crash. One problem is the lack of historical returns for that event. Cisco started trading in Nasdaq only
on March 26, 1990, so that no historical returns exist for the stock market crash of 1987. In that case, we
calculate the expected return by using the predictive stress test. For example, the S& P 500 dropped -13.01%
during the five-day period from October 19 to October 23, 1987. Given that Cisco’sβ is 1.64, the expected
loss from holding Cisco shares in the crash is -21.38% (= 1.64× (−13.01)).
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Chapter 5

Risk-Return Profile

5.1 ReturnGrades

We receive numerous requests about forecasting returns. Generally, most want to know if we can forecast
returns consistently better than a "random walk in the markets". Unfortunately, modern portfolio theory does
not offer a robust methodology to forecast returns. Accordingly, we point to a natural benchmark or reference
return - historic performance. Although a historical return is not necessarily a good forecast of future returns,
it does provide an acceptable starting point. As a benchmark, we suggest using an annualized, longer-term
historical return.

How much history should be included in computing a benchmark return? A trade-off exists between longer
and shorter historic time series. Longer time series can remove abnormal price movements evidenced in the
short run. Additionally, longer history can provide a better picture of larger scale trends. However, longer
history has a higher chance of including structural changes. Structural changes can make past performance
even less relevant to valuations moving forward. As such, arriving at an appropriate historic return is a
case-by-case decision. A general rule of thumb is to match the length of historic time series to the future
investment horizon. For short-term investments, we suggest a time series that covers more than two years
but less than five years, which will reflect recent market dynamics. For long-term investments, the historic
time series should cover more than one business cycle to include both a bull and bear market period.

With this in mind, we provide the following computation. The annualizedn-day historical return of asseti

is computed from

ri =
[
1 +

(
Pi,t − Pi,t−n

Pi,t−n

)]252/n

− 1, (5.1)
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wherePi,t andPi,t−n denote today’s asset price and the pricen days ago.

It is worth noting that instead of the logarithmic return we use the absolute return, due to the fact that for
periods exceeding a year price movements can be very large. Keep in mind that because our benchmark
return is an ex-post observation, it sometimes shows extreme positive values; at other times, extreme negative
values will be seen.

Investors should always consider both risk and return prospects before making any investment decision. A
risk-return performance index that combines both dimensions of risk and return and translates into a single
measure would prove extremely useful. However, building a risk-return performance index is an arbitrary
matter, as it needs to make assumptions about each individual’s appetite for risk. This is too subjective to
provide any wide-scale utility.

Two popular approaches combine risk-return performance in a single coefficient - i) Sharpe ratio and ii)
risk-adjusted return. Institutional and individual investors have used the former, the ratio of excess return to
the underlying standard deviation, since the 1970’s. The risk-adjusted return approach, on the other hand,
has grown in popularity since the mass-scale application of VaR (Value at Risk) for capital requirements was
introduced, and is now used widely by financial companies.

Our risk-return performance index, ReturnGrades, is founded on the principles of the latter, risk-adjusted
returns. We do this for two reasons. A risk-adjusted return is typically presented as an annualized return,
i.e. how much is earned after one year if one dollar is invested today. The Sharpe ratio, by contrast, is in
ratio form and represents the return to standard deviation. For most investors, the concept of a return is more
intuitive than a ratio. Furthermore, a risk-adjusted return can incorporate various degrees of risk aversion by
simply adjusting the level of risk which is measured by VaR - a Sharpe ratio cannot.

Generally, the risk adjusted return for a financial company is defined as

Risk Adjusted Return for asset i= ri − rb + rf × V aRi

V aRi

, (5.2)

whererb is a borrowing rate of the financial company andV aRi denotes VaR of asseti. Both are average of
lastn days.

A financial company does not need to internally finance its investment. It can borrow one dollar at a cost of
rb and invest it to returnri . Given this, the company earns(ri − rb) from the risky investment. In addition to
every initial dollar of risky investment, a financial company puts asideV aRi of its own capital as a reserve or
"buffer" against the risky investment. If the company applies a 99% level of confidence as buffer capital, it
can cover losses up to the worst 1% case. In this vein, the level of VaR represents the degree of risk aversion
of the company. A higher level of VaR denotes a higher degree of risk aversion. Generally, a company invests
the buffer capital in risk free assets and obtainsrf ×V aRi on investments. In summary, the company invests
V aRi of its own capital and earns(ri − rb + rf × V aRi) after one year. Thus, the risk-adjusted return for
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the financial company is the return on its risky investments plus interest earned on reserves, which insures
against losses from risky investments with a certain level of confidence.1

To make this concept of risk-adjusted return applicable to an individual investor, we have made two ad-
justments. It is impractical to think that individual investors have access to an unlimited pool of capital.
Accordingly, the initial amount of investment is notV aRi but(1+V aRi) which includes one dollar of initial
investment added to the risky asset. As such, an individual investor earnsri from the risky investment, which
ignores the borrowing cost ofrb. 2 The second thing to consider is that returns on risk free investments are
limited for the individual. Moreover, the rate is usually negligible. A typical checking account does not
offer significant interest; a cash account held at a brokerage company gives even less interest. Therefore, we
ignore the risk free return for capital reserves,(rf × V aRi). 3

After two adjustments are made to accommodate an individual investor, ReturnGrades, the modified risk-
adjusted return for an individual investor, is defined as

ReturnGrade for asset i= ri

1 + V aRi

. (5.3)

Fortunately, the average(1 − α) level ofV aRi is easily calculated from our RiskGrades function.

V aRi = zα × 0.0020× 1

n

n−1∑
j=0

RGt−j,i , (5.4)

where,zα denotes the one tail entry of the standard normal distribution, i.e.,z0.001, z0.01, andz0.05 are 3.10,
2.33, and 1.64, respectively.

Next, we need to decide which level of VaR we will use as a default. As already mentioned, the level of
VaR is representative of the investor’s degree of risk aversion and is entirely a subjective decision. Table 5.1
illustrates how each level of VaR affects the minimum required return on the investment. For example, for
a risky investment with a RiskGrade of 100, a 99.9% VaR requires a 9.7% return from the risky investment
to put it on equal footing with a risk free investment. Using ReturnGrades with a 95.0% VaR level only
requires an 8.0% return. This means that an investor who uses ReturnGrades with a 99.9% VaR level is more
risk averse than an investor who uses ReturnGrades with a 95.0% VaR factor. The higher confidence level
requires an additional 1.7% return for a comparable risky investment. Generally, a financial company will
use a 99.0% VaR to compute its risk-adjusted return.4 We make the assumption that an individual investor
will likely have a higher degree of risk aversion than financial company and have set the ReturnGrade default
level of VaR at 99.9%.

1From a theoretical standpoint, it does not matter whether the company actually reserves against the risky investment.
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Table 5.1:ReturnGrades for Alternative Risk Aversion

RetrunGrades 6.0 6.0 6.0 6.0 6.0 6.0
Risk Free Rate 6.0 6.0 6.0 6.0 6.0 6.0
RiskGrades 0 100 200 300 400 500
Return for 99.9% VaR 6.0 9.7 13.4 17.2 20.9 24.6
Return for 99.0% VaR 6.0 8.8 11.6 14.5 17.3 20.1
Return for 95.0% VaR 6.0 8.0 10.0 11.9 13.9 15.9

Figure 5.1:Risk-Return Profile of UK Funds
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Figure 5.1 plots the actual risk-return profile of UK funds over one year. Three lines represent risk free
equivalent ReturnGrades required for a risky asset at 99.9%, 99.5%, and 95.0% internal levels of VaR. The

2It is also a good idea to exclude the borrowing cost ofrb from the equation as the borrowing rate is different across individual
investors.

3Excluding a risk free return is related to the degree of risk aversion. It penalizes riskier investments. If we believe that individuals
have a higher degree of risk aversion than financial institutions, the exclusion of the risk free return is validated.

4Some suggest using a VaR level related to the bankruptcy probability of a company. If a company desires a BBB credit rating, it
should use 98.5% VaR factor since the historical average bankruptcy probability of a BBB rating is 0.15%. Hence, investors should
decide on the level of VaR based on individual risk tolerances.
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funds that fall on the lines perform on par with risk-free assets. The funds that fall above the lines represent
superior performance and the funds that fall below the lines suggest inferior performance over the given time
horizon. Furthermore, we can directly rank each return-risk performance with RiskGrades.

Before we finish our discussion of ReturnGrades, it is necessary to point out some limitations. As we
explained earlier, because we lack a reasonable expected return computation, almost by default we use a
longer-term historical return as the benchmark. If an investor has found a better measure of expected returns,
we strongly recommend using it. The return figure in Equation 5.3 is an expected return (ex-ante) and any
expected return on a risky asset must be higher than the risk free rate. If the expected return of an asset is
less than the risk free rate, an investor should not consider it as a worthy investment opportunity as long as it
is not a hedge instrument which has strong negative correlation with other assets of her portfolio. However,
because we use historical returns (ex-post), actual returns may be less than the risk free rate, which leads to
some strange results – for assets of less than zero return, ReturnGrades are more favorable to higher risky
assets. The basic reason for this is that a zero return from the buffer capital should no longer be viewed as a
penalty and the zero return of the buffer dilutes the negative return on the underlying asset. Unfortunately,
neither modern portfolio theory nor we have a perfect solution to this problem. Furthermore, assets with
return prospects less than the risk free rate are not considered as worthy investments and have been excluded
from our rankings. This problem is not serious as we can remove the risk free return on buffer capital from
the numerator in Equation 5.2. Then, the ranking of assets with returns greater than zero and assets with
returns less than zero is not inverted at any time.

5.2 Risk-Return Optimization

5.2.1 Overall Optimization

An investor opens her brokerage account today and deposits $10,000. The investor puts about 30 assets in her
basket of candidate investments after considering various financial information and her favorite assets. Her
next investment decision is how much of her money to allocate to the candidate assets in order to maximize
her portfolio’s return and minimize her portfolio’s risk.

We can start the optimization problem from a simple setup that maximizes the return of the investor’s portfolio,
given a predetermined maximum level of the portfolio’s RiskGradeTM .

Maximize(ω) rp =
N∑

i=1

ωiri, (5.5)

Subject to
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RGp ≤ RGmax, (5.6)

N∑
i=1

ωi = 1, (5.7)

and

0 ≤ ωi ≤ ωmax for i = 1, 2, ..., N ∈ C, (5.8)

whereri andωi denote the return and weight of asseti, while rp andRGp denote the return and RiskGrade
of the portfolio, respectively.

The objective function of Equation 5.5 is to maximize the portfolio return with respect to the weight of
each asset in the portfolio. Three restrictions apply to the calculation: The first restriction, in Equation 5.6,
requires that the portfolio RiskGrade be equal to or less than the maximum level (RGmax) predetermined by
the investor. The second restriction, in Equation 5.7, requires that the sum of all weights be unity. That is, we
do not include a margin debt decision in the optimization problem. The investor should decide on the margin
debt amount before solving the optimization problem; to solve the optimization problem, she must multiply
the total investment amount (including margin debt) by its weight. The third restriction, in Equation 5.8,
requires that we do not allow either short sale (i.e., eachω should be non-negative) or extreme concentration
(i.e., eachω must be less than the investor’s predetermined maximum level,ωmax). Also, all assets must be
selected by the investor from the predetermined candidate set (C).

The maximization problem can be easily converted to a minimization problem; i.e., the investor minimizes her
portfolio’s RiskGrade, given a predetermined minimum level of the portfolio’s return. We use the following
set of equations:

Minimize (ω) RGp, (5.9)

Subject to

rp =
N∑

i=1

ωiri ≥ rp,min, (5.10)
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N∑
i=1

ωi = 1, (5.11)

and

0 ≤ ωi ≤ ωmax for i = 1, 2, ..., N ∈ C. (5.12)

In this case, the objective function of Equation 5.9 is to minimize the portfolio RiskGrade with respect to
the weight of each asset in the portfolio. The first restriction, in Equation 5.10, shows that the return of the
portfolio must be equal to or greater than the investor’s predetermined minimum level (rp,min). The second
and third restrictions, in Equation 5.11 and Equation 5.12 are identical to the restrictions of the maximization
problem.

5.2.2 Incremental Optimization

After opening her $10,000 account, the investor wants to increase her position by $1,000. Because of
transaction costs, she decides to keep her current position ($10,000 current market value) and add only one
other asset from her basket of candidate investments. To solve the incremental optimization problem,5 we
impose the following two additional restrictions on both the maximization and the minimization problems:

ωi = ωi,cr for i = 1, 2, ..., Ncr ∈ Ccr (5.13)

and

ωi = 0 or 1−
Ncr∑
i=1

ωi for i = Ncr + 1, Ncr + 1, ..., N ∈ Cf t , (5.14)

whereCcr denotes the assets of the current position, andCf t denotes the candidate assets for future investment.

The first restriction maintains the positions of the current portfolio and assigns them to the new portfolio.
The weightωi,cr of the current position is calculated by dividing the current value of the asset by the new

5Be aware that we cannot guarantee the solution of the incremental optimization to match the solution of the overall optimization
problem, which starts from zero position for all assets.
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total portfolio value. For example, if the investor holds USD 2,000 worth of Cisco shares, then Cisco’s
current weight is 0.20 (= 2, 000/10, 000). In the new portfolio, Cisco’s weightωi,cr should be reduced to
0.18 (= 2, 000/11, 000). The second restriction stipulates that all further investment be placed in the one
additional asset from the candidate basket. In the example, the weight of the additional asset should be 0.09
(= 1, 000/11, 000).

Now let us consider the opposite case of incremental optimization. After her initial investment, the investor
wants to close $1,000 of positions from her brokerage account ($10,000 current market value). Because of
transaction costs, the investor wants to adjust only a small number of current positions. Unfortunately, it
is invalid to solve the problem by using the optimization framework explained in this section. Instead, we
must use a pragmatic “what-if” approach. The investor closes some current positions, then calculates the
return and the RiskGrade of the shrunken portfolio. The RiskImpactTM measure can also be a good guide for
selecting which asset to close, because it shows the change in the RiskGrade of the total portfolio when one
of the assets is closed. The investor can then choose the best strategy for a closing that will bring a higher
return and a lower RiskGrade.

5.2.3 Optimization Inputs

Risk-return optimization requires two inputs: (1) the expected returns (ri) of all the assets an investor
considers for calculating the portfolio return. (2) the variance-covariance matrix of the candidate basket for
calculating the portfolio RiskGrade. We have already explained in Section 2.3 how to calculate variance-
covariance matrix and how robust it is as a forecast of future volatility. As an estimate for the expected
return, we suggest using an annualized long historical return. Previously, in section 5.1, we demonstrated
how to calculate historical return. Since our estimated return is an ex-post observation, it sometimes shows
positive extreme values and at other times, negative extreme values. Under these conditions, the optimization
provides a corner solution. It always concentrates on the asset that provides a positive extreme return, and
it always excludes the asset that provides a negative extreme return. To solve the optimization problem in a
reasonable manner, we fix a ceiling and a base for the expected return at 50% and 0%, respectively.6 The
historical return based approach is our suggestion for the estimation of the expected return. Yet, the investor
may replace this benchmark return with her own forecast.

To illustrate the optimization procedure we use the following example. we choose nine stocks, place them
in the candidate asset set and try to find the optimal weights. The nine stocks are CITIGROUP (NYSE:C),
NEWS CORP LTD (NYSE:NWS), MOTOROLA INC (NYSE:MOT), AOL TIME WARNER (NYSE:AOL),
APPLE COMP INC (Nasdaq:AAPL), FOUR SEASONS (NYSE:FS), SAKS INC (NYSE:SKS), DONNA
KARAN (NYSE:DK), TRANS WORLD AIR (AMEX:TWA). Their historical returns and RiskGrades are
shown in the second and forth column of Table 5.2 which are calculated by data from October 1, 1998 to
December 14, 2000. Following our rule of setting expected return from historical return, we set expected

6If we include hedge instruments which have strong negative correlation with other assets in the candidate set and/or allow short
sale for the asset of negative return, we should not apply the base of the return.

RiskMetrics



5.2. RISK-RETURN OPTIMIZATION 45

returns in the third column. With the restrictions of no short sale and no more than 50% weight for one asset,
we obtain an efficient frontier as shown Figure 5.2. The efficient frontier shows the minimal RiskGrade that
can be achieved subject to a required expected return. If an investor’s required expected return is 40%, the
minimal RiskGrades that can be obtained using this basket of assets is 156. The optimal portfolio weights
are given in the last column of Table 5.2.

Table 5.2:Optimal Weights

Stock Ticker Historical Return Expected Return RiskGrades Optimal Weight
C 57.98 50.00 197 50.00

NWS 13.31 13.31 256 0.24
MOT 18.17 18.17 383 0.00
AOL 83.64 50.00 333 0.67

AAPL -8.86 0.00 579 2.01
FS 54.17 50.00 230 28.44

SKS -27.06 0.00 337 4.80
DK -15.62 0.00 266 13.37

TWA -41.88 0.00 593 0.45

Figure 5.2:Efficient Frontier
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5.3 Sector Analysis

One key investment information about a fund is its sectors association. We introduce a simple method of
sector analysis based on the variance decomposition technique of econometrics.

The traditional sector analysis calculates the weights of sectors as classifying actual holdings of a fund through
sectors. Thus, it requires entire holding information and time consuming assignment process. However, the
sector analysis based on the variance decomposition technique focuses on how much the value movement of
a fund is explained through the value movement of each sector. Thus, it needs only net value information
of the fund and index of sectors and quick multivariate regression. It is worth noting that our goal is not
duplicate the actual holding weights of sectors but the relative sizes of impacts from sectors to return and
risk of fund.

The technique consists of two steps - multivariate regression and variance decomposition. The multivariate
regression fits return of fund to return of sector indices.

ri,t = α + β1s1,t + β2s2,t + ... + βksk,t + εi,t , (5.15)

whereri,t denotes the return of fundi calculated from the net asset value of the fund.sj,t denotes the return of
sectorj calculated from the sector index.εi,t denotes the random error term. Thus, the correlation between
thes.,t s andεi,t is zero.

To put heavier weight on recent returns, Equation 5.15 is estimated by weighted least squares. The weight is
defined as RiskMetrics’ exponentially weighted scheme with decay factor 0.97.

ωt−h = (1 − λ)λh, h = 0, 1, ..., n, (5.16)

whereωt−h is weight for equation ofh days before andλ is decay factor of 0.97. The effective number of
observations,n, is defined as 151 days following decay factor 0.97 (h=1...151).

Then, the weighted least squares estimator ofβs is

B̂ = (S ′�S)−1S ′�R, (5.17)

whereB̂ = [α̂, β̂1, ..., β̂k]′, S = [1 : s1 : ... : sk], � denotesn by n diagonal matrix ofω, andR = [ri].
Next, we do Concentration Identification and Risk Decomposition based on variance decomposition tech-
nique. We define Risk Decomposition as ratios of contributions of sectors to total variance of the fund. The
variance of fundi is decomposed through the variances and the covariances of the sectors as
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Var(ri) =
k∑

j=1

β̂j

2
Var(sj ) + 2

k∑
j=1

∑
h6=j

β̂j β̂hCov(sj , sh) + Var(εi), (5.18)

where Var(.) and Cov(., .) denote variance and covariance operators with weights defined by Equation 5.16.
Note that thesjs andεi are orthogonal by construction.

It follows that the contribution of sectorj for the variance of fundi is defined as

riskj = β̂j

2
Var(sj ) + ∑

h6=j β̂j β̂hCov(sj , sh)

Var(ri)
× 100. (5.19)

The residual portion is interpreted as the idiosyncratic risk of the fund. Thus, the contribution of idiosyncratic
movement for variance of fundi is defined as

riskε = Var(εi)

Var(ri)
× 100= 100−

k∑
j=1

riskj . (5.20)

We define Concentration Identification as ratios of absolute values of normalized coefficients of sectors to
sum of them. The normalized coefficients mean the coefficients for the explanatory variables which are
adjusted to have unit variance. Therefore, the normalized coefficient of sectorj is computed byβ̂jσj , where
σj denotes the standard deviation of sectorj , i.e.,

√
Var(sj ).

concentrationj = |β̂j |σj∑k
j=1 |β̂j |σj

× 100. (5.21)

Thus, the Concentration Identification does not concern about the direction of the value movement of fund
but concerns only the relative size of the value movement of fund by the impact of value movement of sectors.
Aware that the relative size of the value movement of fund is larger as the value movement of fund is more
sensitive to unit value movement of a sector and/or the value movement of the sector is larger than the other
sector. For example, if while the utility sector has 0.2 sensitivity to a fund (βu) and 10% volatility (σu), the
technology sector has 0.1 sensitivity (βt ) and 40% volatility (σt ), then the total impact from the utility sector
to the fund (= 0.2 × 10%) is half of that from the technology sector (= 0.1 × 40%).

As an example, Table 5.3 shows actual holdings and the sector analysis based on the variance decomposition
technique as of August 11, 2000. We choose randomly 10 well known funds - DSPIX (Dreyfus Basic S&P
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500 Stock Index), FSPTX (Fidelity Select Technology), VIVAX (Vanguard Value Index), JAWWX (Janus
Worldwide), VFINX (Vanguard 500 Index), FSENX (Fidelity Select Energy), VGEQX (Vanguard Growth
Equity), TVFQX (Firsthand Technology Value), AYEBX (AmSouth Value B), and NFBSX (Nvest Bullseye
A).

The upper part of Table 5.3 shows the most recent holdings of the above funds from Yahoo’s data. Some
of the holding information have one-quarter lag (June 30, 2000) and others have two-quarter lag (March
31, 2000). The lower two parts of the table show the result of Concentration Identification and and Risk
Decomposition based on the net asset value of the fund and the 11 sector indices of the S&P up to August
11, 2000. Aware that the sector classifications of Yahoo and S&P are a little different. It is worth noting
that Risk Decomposition can have negative value because the covariances between one sector with the other
sectors are large negative enough to dominate positive variance of the sector for Risk Decomposition.
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Table 5.3: Actual Holdings and Sector Analysis

Actual Holdings DSPIX FSPTX VIVAX JAWWXVFINX FSENX VGEQX TVFQX AYEBX NFBSX
Industrial Cyc 10.81 2.03 11.10 3.09 10.42 3.23 4.15 7.63 11.21 23.87
Consumer Cyc 4.97 0.00 2.37 0.00 5.61 0.00 4.25 0.00 2.82 0.00
Consumer Non 1.88 0.00 3.86 5.76 1.52 0.00 0.54 1.46 3.84 0.00

Energy 5.90 0.00 12.93 1.97 5.86 95.13 3.16 0.00 14.04 10.06
Financials 13.02 0.00 27.09 2.77 12.73 0.00 0.00 0.00 16.21 0.00

Health 8.95 0.00 3.75 5.33 11.47 0.00 11.92 4.27 11.75 8.66
Retail 6.08 0.05 4.18 1.95 5.65 0.00 4.34 0.00 9.36 4.47

Services 13.63 1.44 20.21 41.13 12.62 0.30 11.29 2.62 18.68 8.95
Technology 32.95 96.48 10.52 37.98 32.16 0.00 59.48 84.01 7.05 34.08

Utilities 1.81 0.00 3.99 0.00 1.97 1.34 0.87 0.00 5.04 9.91
Concentration DSPIX FSPTX VIVAX JAWWXVFINX FSENX VGEQX TVFQX AYEBX NFBSX

Basic Materials 1.66 1.93 8.12 1.96 1.26 2.08 1.60 3.76 8.42 0.86
Capital Goods 6.01 0.01 0.68 14.91 5.21 2.94 0.06 4.08 3.72 15.47
Consumer Cyc 6.74 0.29 3.40 4.93 6.91 2.41 3.20 3.49 3.04 10.47
Consumer Non 6.38 9.13 3.73 10.86 6.17 0.32 0.46 10.09 4.13 0.97

Energy 4.20 6.01 10.34 6.18 4.27 77.53 5.78 5.13 15.23 1.18
Financial 13.35 5.92 32.85 4.41 14.49 3.36 6.05 0.01 26.23 5.74

Healthcare 11.59 0.04 5.42 2.38 11.54 4.17 9.71 1.39 4.68 10.18
Services 5.34 7.07 14.48 9.54 5.41 0.69 0.68 9.92 3.62 10.67

Technology 41.58 63.12 10.86 42.04 41.84 3.03 69.20 57.72 13.87 36.35
Transportation 0.40 6.12 2.39 0.16 0.05 0.52 2.74 2.71 5.42 6.61

Utilities 2.70 0.30 7.68 2.57 2.78 2.89 0.46 1.65 11.60 1.44
Risk Decomp DSPIX FSPTX VIVAX JAWWXVFINX FSENX VGEQX TVFQX AYEBX NFBSX

Basic Materials 0.55 -0.21 6.27 0.06 0.40 0.76 -0.01 -0.33 6.97 -0.04
Capital Goods 7.02 -0.01 -0.67 10.40 5.94 0.57 -0.05 2.73 -3.21 12.21
Consumer Cyc 5.82 -0.07 3.11 1.55 5.85 0.41 1.33 -0.62 2.68 -2.76
Consumer Non 5.24 -1.12 3.31 -1.32 4.99 -0.02 -0.16 -0.68 3.33 -0.34

Energy 0.38 1.76 4.48 1.56 0.37 85.38 1.23 1.56 10.51 0.16
Financial 13.90 2.73 48.17 1.95 15.07 -0.24 3.39 0.01 34.59 3.28

Healthcare 2.85 -0.02 1.39 0.61 2.69 -0.26 -0.63 -0.49 1.65 0.48
Services 3.99 5.45 10.48 6.25 4.00 -0.14 0.43 8.11 1.37 7.20

Technology 58.21 85.28 9.50 44.92 57.82 -0.19 89.10 77.65 9.97 38.80
Transportation 0.25 -1.30 2.02 0.04 0.04 0.05 -0.93 -0.64 4.49 3.02

Utilities 1.21 0.02 5.87 0.10 1.23 1.40 0.04 0.13 10.91 0.22
Idiosyncratic 0.59 7.49 6.05 33.86 1.61 12.27 6.27 12.58 16.73 37.76
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Chapter 6

Ghost Series Generator

To calculate all the risk measures introduced in this document and to implement stress tests, we need up
to five years of daily data. However, many Nasdaq stocks that recently went IPO do not have a five-year
history. Therefore, we need to create proxy data for each instrument that has less than a year-year history.
The proxy data should maintain the mean, volatility, and covariance structure of the instrument’s existing
data. In addition, the proxy data should keep the recent existing data. Recent, 151-day data is crucial for the
calculation of RiskGradeTM values because we use the exponentially weighted moving average with a decay
factor of 0.97. In this chapter, we introduce the Ghost Series Generator, which we base on the one-factor
model to generate proxy data for market indices.1

6.1 Construction of the One-Factor Model

The one-factor model describes the returnsri,t of an individual equity as

(
ri,t − µi

σi

)
= ρi

(
rm,t − µm

σm

)
+

√
(1 − ρ2

i )εi,t , (6.1)

whereri,t denotes the return of equityi, andµi andσi denote its mean and standard deviation. The termrm,t

denotes the return of the market portfolio, andµm andσm denote its mean and standard deviation. The term
ρi denotes the correlation between the return of equityi and the market portfolio. The random error termεi,t

follows the standard normal distribution, and
√

(1 − ρ2
i )εi,t denotes the idiosyncratic movement of equityi.

1We appreciate Alan Fang’s helpful assistance with the research in this chapter.
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We can rearrange Equation (6.1) with respect tori,t as follows:

ri,t =
(

µi − ρiσi

σm

µm

)
+ ρiσi

σm

rm,t +
(√

(1 − ρ2
i )σi

)
εi,t (6.2)

How does the above one-factor model differ from the security market line of the CAPM and the univariate
regression model?

The security market line is described as

ri,t = rf,t + βi(rm,t − rf,t ) + εi,t

= (1 − β)rf,t + βrm,t + εi,t , (6.3)

where,rf,t denotes the risk-free asset return.

If you setβi equal to(ρiσi)/σm, Equation (6.3) looks similar to Equation (6.2). The drift term, however,
makes the security line and the one-factor model completely different from each other. The security line has
only one unknown parameterβi , which simultaneously determines both the slope and the drift. Therefore,
the slope and the drift are closely related to maintain the CAPM theory that the equity with a largeβi provides
a large expected return. However, it is doubtful that CAPM holds for current IPO stocks. Usually, recent IPO
stocks show relatively smallβs (small systematic, but large idiosyncratic movement) but provide a relatively
large expected return. (For more information about IPO stocks, see Section 6.5.) In the one-factor model,

we have another unknown parameter,αi =
(
µi − ρiσi

σm
µm

)
, which may be determined independently ofβi .

Thus, we need not restrict the relationship between the slope and the drift, as explained by CAPM. We can
determine them from the individual time series.

The one-factor model is similar to the univariate regression model except for the coefficient

(√
(1 − ρ2

i )σi

)
of the error termεi,t . The coefficient explicitly makes the total variance terms in the right-hand side of
Equation (6.2) equal to the variance of the return of equityi:

VAR(ri,t ) =
(

ρiσi

σm

)2

VAR(rm,t ) +
(√

(1 − ρ2
i )σi

)2

VAR(εi,t ) (6.4)

= ρ2
i σ

2
i + (1 − ρ2

i )σ
2
i (6.5)

= σ 2
i , (6.6)

where VAR denotes the variance operator and VAR(εi,t ) equals unity becauseεi,t follows the standard normal
distribution. This is an important feature of the one-factor model, since it guarantees to maintain the volatility
of equityi when we generate proxy data from the right-hand side terms of Equation (6.2).
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6.2 Generation of Proxy Series

Let us assume that equityi has only one year of real historical data (ri,T −1, ..., ri,T −252). Then, we need to
create proxy historical data (r̂i,T −253, ..., r̂i,T −1260) for the previous four years and combine it with the real
historical data. The process of generating a proxy series is summarized in the following six steps:

1. Find the market portfolio return data (e.g., S&P Industrial Index) of the last five years (t = T −
1, ..., T − 1260). To find the market portfolio index of equityi, we can use the Standard Industrial
Code (SIC) of equityi.

2. Estimate all parameters (µi, σi, µm, σm, andρi) in Equation (6.2) by using real historical data.

3. Construct 1,008 daily returns from Equation (6.7) for the previous four years (t = T − 253, ..., T −
1260).

r̂i,t =
(

µ̂i − ρ̂i σ̂i

σ̂m

µ̂m

)
+ ρ̂i σ̂i

σ̂m

rm,t +
(√

(1 − ρ̂i
2)σ̂i

)
εi,t , (6.7)

wherê denotes the estimated parameters and returns.

The random error termεi,t is generated from the standard normal distribution. Then, the unique
unknown variable is the proxy return series for equityi (r̂i,t ).

4. Compute the proxy return series of equityi.

5. Construct the five-year proxy return series[ri,T −1, ..., ri,T −252, r̂i,T −253, ..., r̂i,T −1260] for equity i by
combining real historical data and the generated proxy historical data.

6. Construct the five-year proxy price series[pi,T −1, ..., pi,T −252, p̂i,T −253, ..., p̂i,T −1260] for equity i by
using the proxy return and current price of equityi.

6.3 Example of Global Crossing

Global Crossing (Nasdaq:GBLX) has been traded in Nasdaq since August 14, 1998. As of December 31,
1999, we have 374 days of real historical data and need to generate another 886 days of proxy data to fill in
the history from January 1, 1995 through August 13, 1998.

Using real historical data, we estimate all parameters. We estimateµi, σi, µm, σm, andρi to be 0.0038,
0.0514, 0.0012, 0.0220, and 0.3519, respectively. The mean and volatility of GBLX are more than twice
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Figure 6.1:Example of Proxy Data
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as large as those of the telecommunications market index. The correlation coefficient between GBLX and
telecommunications is relatively high.

Next, based on the estimated parameters, we generate a proxy series. Figure 6.1 shows the real and proxy
histories of GBLX. We can easily see that the proxy history of GBLX (left-hand side of dotted line) correlates
with the real history of the market index (right-hand side of dotted line) and maintains its mean and volatility.

6.4 Backtesting Proxy Data

Let us discuss how well proxy data built by the Ghost Series Generator represents a period of missing data.
To answer this question, we apply backtesting to several examples. First we assume that the series has only
one year of historical data (in-sample period of December 31, 1999–January 1, 1999). We then estimate all
the parameters of the one-factor model by using only in-sample data. Next, we generate a proxy series for
the previous four years (out-of-sample period of December 31, 1998–January 1, 1995) by using estimated
parameters from the in-sample data. Finally, we compare the proxy series and the realized series obtained
from the out-of-sample data.

We applied the backtesting to Coca-Cola, IBM (NYSE:IBM), and Cisco and plotted the proxy and realized
series in Figure 6.2. The dotted vertical line demarcates the in-sample period (left-hand side) and the out-
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Figure 6.2:Backtesting Examples of Proxy Data
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of-sample period (right-hand side). Since the random numbers that were generated for the error term are
different in each trial, the proxy series are also different. However, basic statistics such as expected return,
volatility, and correlation with market index are maintained in each construction of the proxy series regardless
of the different error terms. Figure 6.2 shows that the volatility of the proxy series is similar to the volatility
of the realized series, and the correlation between the proxy and realized series is high.

Table 6.1 shows the basic statistics of the proxy and realized series. As we expected, the volatility of the
proxy series and the correlation of the proxy series with the market index are very close to those of the
realized series. This consistent agreement of volatilities and correlations validates the use of the proxy series
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Table 6.1:Backtesting Examples of Proxy Data

In Sample Out of Sample
Basic Dec. 31, 1999–Jan. 1, 1999Dec. 31, 1998–Jan. 1, 1995
Statistics Realized Realized Ghost
Coca-Cola
Expected Return -0.0003 0.0009 0.0008
Volatility 0.0211 0.0160 0.0181
Corr. w/ Market Index 0.9333 0.9470 0.9055
Corr. w/ Realized and Ghost ... 0.8529

IBM
Expected Return 0.0016 0.0014 0.0020
Volatility 0.0264 0.0198 0.0231
Corr. w/ Market Index 0.8030 0.8138 0.7524
Corr. w/ Realized and Ghost ... 0.5922

Cisco
Expected Return 0.0038 0.0024 0.0014
Volatility 0.0262 0.0277 0.0284
Corr. w/ Market Index 0.9949 0.9238 0.9943
Corr. w/ Realized and Ghost ... 0.9298

for volatility- and correlation-based risk measures, such as RiskGrades and XLossTM . On the other hand, the
expected returns behave differently. For Coca-Cola the expected return of the proxy series is close to the
return of the realized series, while for IBM and Cisco it is not. This finding means that we must be cautious
about using an expected return from a proxy series. Therefore, when we use a proxy series to obtain both
the volatility- and the expected return-based risk measures such as Chance of Losing Money, we should be
aware of its limitations. Overall, the high correlations between proxy and realized series show that a proxy
series can be a reasonable replacement for a period of missing data.

6.5 Recent IPO Stock

If equity i has a very short history of real historical data (less than 151 days), the parameters estimated from
the real history are very unstable. To avoid instability, in Step 2 of Section 6.2 we use the average parameters
of the IPO stocks in the industry of equityi.

When we estimate the average parameters of IPO stocks, we must use only the data that immediately follows
the IPO date of each equity. Since the IPO date is different across IPO stocks, we use the technique of event
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study. The process of estimating the average parameters of IPO stocks is summarized in the following five
steps using the example of the telecommunication industry:

Figure 6.3:IPO Event in the Telecommunication Industry
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1. Find all IPO stocks between 1995 and 1999. There are nine IPO stocks in the telecommunication
industry.

2. Set the IPO date of an individual stock to “Date 1” and extract up to 151 days of data after IPO.

3. Normalize the closing price on the IPO date to 100, and overlap all IPO stocks following not the
calendar date, but the IPO dates in the period Date 1–Date 151. Figure 6.3 plots the normalized prices
of nine IPO stocks in the telecommunication industry.

4. Estimate parametersµi, σi , ρi , µm, andσm for individual IPO stocks by using real historical data from
Date 1 to Date 151.

5. Average the estimated parameters for each industry.

Table 6.2 shows the average parameters of the 146 IPO stocks that appeared from 1995 through 1999 across
twenty S&P industrial classifications. It is worth noting that the average volatility of IPO stocks (annualized
volatility, 76.04%) is very high and the average correlation with the market index (0.1470) is relatively small.
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Figure 6.4:IPO Event in the Chemical Industry
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This means that IPO stocks have a very high idiosyncratic risk but a small systematic risk. This fact validates
our method of estimating parameters from the data of only IPO stocks right after the IPO date.

Table 6.2 also shows that the average parameters vary widely across industry. Specifically, the volatility of the
so-called High-Tech industries (technology, telecommunication, computer networking, computer hardware,
pharmacy and semi-conductors) is very high. As an illustration, compare Figure 6.3 of the telecom IPOs
and Figure 6.4 of the chemical IPOs. You can easily see that the telecom industry is twice as volatile as the
chemical industry. This fact validates our method of applying each industry’s characteristic parameters to
the new IPO stock.
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Table 6.2:Estimated Parameters for IPO Stocks

Industry No. of IPOs µi σi ρi µm σm

AIRLINE 4 0.0013 0.0374 0.0685 0.0018 0.0172
AUTO 5 0.0009 0.0330 0.0807 0.0010 0.0177
BEVERAGES NON-AL 4 -0.0001 0.0434 0.1393 0.0003 0.0150
RETAIL 8 0.0017 0.0385 0.1134 0.0009 0.0241
CHEM 10 0.0004 0.0353 -0.0101 0.0005 0.0140
COMP HARD 6 0.0028 0.0528 0.1639 0.0009 0.0199
TELE CELLULAR 6 0.0020 0.0459 0.0456 0.0029 0.0238
ELECT SEMI-CONDUCTORS 6 0.0009 0.0582 0.1830 0.0009 0.0251
FINANCE 10 0.0006 0.0388 0.3102 0.0003 0.0161
FOOD 6 -0.0009 0.0297 0.1283 -0.0005 0.0112
COMP NETWORKING 10 0.0033 0.0615 0.2147 0.0042 0.0256
BROADCASTING 9 0.0015 0.0395 0.1311 0.0019 0.0180
METALS 5 -0.0015 0.0304 0.0956 -0.0017 0.0169
OIL & GAS 3 0.0015 0.0247 0.2461 -0.0002 0.0133
PHARM 9 0.0011 0.0548 0.0898 0.0007 0.0144
TRANSPORTATION 5 0.0009 0.0251 0.1853 0.0008 0.0090
TELECOM 9 -0.0003 0.0620 0.1816 0.0008 0.0179
TECHNOLOGY 19 0.0045 0.0741 0.2530 0.0021 0.0186
BIOTECH 6 0.0019 0.0468 0.0662 0.0012 0.0195
UTILITIES 6 0.0006 0.0463 0.0143 0.0004 0.0109
Weighted Average 146 0.0013 0.0479 0.1470 0.0012 0.0178
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beta. The measure of a fund’s or stock’s risk in relation to the market, or an alternative benchmark. A beta
of 1.5 means that a stock’s excess return is expected to move 1.5 times the market excess returns; e.g., if the
market excess return is 10%, then we expect, on average, the stock return to be 15%. Beta is referred to as
an index of the systematic risk due to general market conditions that cannot be diversified away.

CAPM . Capital Asset Pricing Model. A model that relates the expected return on an asset to the expected
return on the market portfolio.

Chance of Losing Money. Shows the probability with which the value of an investment after a 1-, 3-, or
12-month horizon (or a user-defined investment horizon) can drop below its initial value (or a user-defined
level).

decay factor. Lambda (λ). The weight applied in the exponential moving average. The decay factor takes
a value between zero and one. RiskMetrics uses a decay factor of 0.94 in the calculation of volatilities and
correlations for the one-day horizon, and 0.97 for the one-month horizon.

diversification benefit. Measures risk reduction that arises from holding a collection of assets that are not
perfectly correlated. The diversification benefit for your portfolio RiskGrade is the difference between the
computed portfolio RiskGrade and the market-value weighted average of the individual asset RiskGrades.
The portfolio diversification benefit for XLoss is the difference between the computed portfolio XLoss and
the sum of the individual asset XLoss values.

exponential weighting. A method of applying weights to a set of data points (returns), with the weights
declining exponentially over time. In a time series context, this results in weighting recent data more than
data of the distant past.

Ghost Series Generator. An algorithm that, based on the one-factor model, generates proxy data for market
indices with short histories of less than five years. The proxy data created by the Ghost Series Generator
maintains the mean, volatility, and covariance structure of the instrument’s existing data.

historical event. An actual historical event that is used in the Historical Event Stress Test to determine the
amount of loss (base currency or percent) that could occur if the event were to happen again. Examples of
historical events are the 1987 Stock Market Crash (Oct. 19, 1987), Gulf War Crisis (Jan. 16, 1991), Mexican
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Peso Crisis (Dec. 14, 1994), Asian Crisis (Jul. 2, 1997), Russian Crisis (Aug. 21, 1998), and the Brazilian
Crisis (Jan. 13, 1999).

historical simulation. A nonparametric method of using past data to make inferences about the future.
One application of this technique is to take today’s portfolio and revalue it by using past historical price and
rates data.

lambda (λ). Seedecay factor.

Marginal XLoss. Shows the contribution of an asset in the portfolio to the total XLoss of the portfolio.
The Marginal XLoss for a specific asset reflects how the portfolio’s XLoss would change if the investor were
to sell that asset and keep the cash proceeds.

market risk . Risk that arises from the fluctuating prices of investments as they are traded in the global
markets. Market risk is highest for securities with above-average price volatility and lowest for stable
securities such as Treasury bills.

parametric. When a functional form for the distribution of a set of data points is assumed. For example,
when the normal distribution is used to characterize a set of returns.

RiskGrade. The RiskGrade for a single position or portfolio is a ranking which measures the potential
volatility of the position or portfolio relative to the volatility of a standard benchmark. The benchmark used
is the average daily volatility of the market-capitalization weighted average of international equity indices
during the period 1995–1999, which is defined to have a RiskGrade of 100. For example, if a position or
portfolio has a RiskGrade of 200, the position or portfolio is twice as volatile as the benchmark.

RiskImpact. The RiskImpact for a single position is the percentage amount that the portfolio’s RiskGrade
will decrease upon removal of that position.

stress testing. The process of determining how much the value of a portfolio can fall under abnormal
market conditions. Stress testing consists of generating worst-case stress scenarios (for example, a stock
market crash) and revaluing a portfolio under those stress scenarios.

systematic risk. Seesystemic risk.

Systemic risk. Also, systematic risk. The risk of a portfolio after all unique risk has been diversified away.
Systemic risks may arise from common driving factors (for example, market and economic factors, natural
disasters, or war) and can influence the whole market’s well being.

unique risk. Exposure to a particular company; sometimes referred to asfirm-specific risk.

user-defined event. A crisis, such as a drop in the S&P 500, that is defined by an individual for a User-
Defined Stress Test in order to determine the amount of loss (base currency or percent) that could occur if
the crisis were to happen again.

Value-at-Risk. A measure of the maximum potential change in value of a portfolio of financial instruments
with a given probability over a preset horizon.
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volatility . Means risk, as measured by the standard deviation of a security’s price.

Worst-Case Performance. The amount of loss (base currency or percent) that can occur if the worst 3-,
6-, or 12-month horizon (or a user-defined horizon) during a given historical period were to occur again.

Worst Losing Streak. An empirical type of risk measure for the long-horizon abnormal market. Risk-
Metrics defines Worst Losing streak as the amount of loss (base currency or percent) that would occur if the
largest drop in asset price, from peak to trough, during the last five years were to repeat. The definition is
similar to that of Worst-Case Performance, except that no predetermined time horizon is required. Therefore,
the worst period is selected not from fixed-period windows, but from flexible peak-to-trough windows.

XLoss. XLoss stands for "Loss in Extreme Markets". The XLoss for a single position or portfolio is the
dollar value by which the position’s or portfolio’s value could fall during periods of high market volatility.
High market volatility periods are defined as months in which market movements are in the 95th percentile
or higher in terms of magnitude. The XLoss is calculated by using the expected value of the market moves
only for these high market-volatility periods.
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