
UI Technical Requirements
VERSION: V1.0

Checklist
Project Structure

Folder structure
Preferred Bundling Stack

HTML
Version
Encoding
Identifiers and Naming conventions
Comments
Structure

CSS
Version
Structure and file separation
Pre-Processors
CSS Frameworks

Javascript
Javascript Version
3rd Party Libraries
Code Conventions
Error handling and Debugging
Modularization and Scoping
Bootstrapping

Website Analytics
MSCI's analytics stack

Browser Support
Browser Support Requirements
Statistics

Data Sources
Configuration
Integration Tests

Meta Tags
CSS Scope and Integration Test
JavaScript Scope and Integration Test
Layout Test

Web Content Accessibility
Animation and Interactions
Forms development
Pop-ups and IFRAMEs
Images and Artwork
Performance

In-page refresh

Checklist
Please use the below checklist to assess the conformance of your delivery with MSCI's requirements. MSCI will also use this checklist to evaluate the
delivered product before we sign-off on it. These are not absolute requirements and there is some room for flexibility to change them based on actual
requirements.

Project structure and folder use is OK

Source code is properly commented

Naming conventions and name-spacing is correctly used

HTML source code Markup is tested as valid HTML5 and is encoded in UTF-8

HTML DOM is properly structured

HTML uses a responsive mobile friendly design

CSS version and pre-processor versions are OK

CSS frameworks are supported

JavaScript version is supported

JavaScript 3rd party libraries are supported

JavaScript code conventions are respected

JavaScript error handling and logging is properly setup

JavaScript bootstrapping is compatible with MSCI's requirements

Analytics vendor is supported by MSCI

Data-sets are stored in a dedicated JSON and the widget can be redrawn via an APi call to show the new values

Configuration is stored in a dedicated JSON and the widget can be redrawn via an APi call to reflect the config change

Analytics requirements are well documented

Browser compatibility is respected

The Integration test has been carried out according to the test specs

IFRAMEs are not used

Performance metrics (size, speed) are within acceptable values

Project Structure
NOTE: For projects where the delivered package is in 100% native Liferay project format please skip to the chapter about "Deliveries and Handover" on
this link: .https://bodhi.msciapps.com/x/q2JyD
The below structure is for a non-Liferay format UI development which will be converted and migrated onto Liferay by the MSCI IT/Web team.

You have to create and hand-over a well structured package to MSCI when the project is completed. It has to contain:

Human readable which can be used in MSCI's development environment to understand, review, modify and rebuild the Source code files
project.
A which is an example of a pre-built ready-ti-deploy binary, It does not need to be human readable and it can be bundled Distribution package
indemnified and ready for deployment.
3rd party dependencies in any form (donwloaded libraries, NPM modules, configuration files, etc.)
Auto-generated explaining the API nevel usage of the methods, functions and classes in the projectJSDoc files
Manual documentation including installation guide, release and change notes and project manifest (a catalog of all the source code files and
dependencies with their filenames, location and short description)
Project meta files and configuration (package.json for NPM, WebPack, Grunt config files, etc.), basically anything that is required to rebuild the
sources into the distributable version from scratch

Folder structure

The folder structure should follow the standard NPM/Webpack structure's recommendations:

MSCI-SAMPLE-UI-PROJECT
 dist
 css
 fonts
 html
 images
 js
 app.js
 index.html
 doc
 jsdoc
 release-notes.txt
 build-instructions.txt
 manifest.txt
 node_modules
 src
 css
 main.css
 navigation.css
 fonts
 roboto.ttl
 images
 background.gif
 lib
 jQuery-1.3.4-bundle.js
 msci-common-lib.js
 html
 navigation.html
 menu.html
 js
 analytics.js
 footer.js
 app.js
 index.html
 gulpfile.js
 package.json
 webpack.config.js

When creating the soucecode package please follow the below rules:

https://bodhi.msciapps.com/x/q2JyD

" " is the source folder in a human readable pre-build format with release version of the library with license headers and usage descriptionsrc/
" " contains 3rd party libraries in a human readable format with licensing info, source repository and locations where it was src/lib
obtained from
" " contain static elements HTML pages, fragments, CSS stylesheets and imagerysrc/{html,css,images}

" " is the output folder of the compilation/transpilation and build process(es) it is the "binary" which cna be used to install in a web application dist/
or on the website, its contents should be minified, bundled and optimized for the runtime environment
" " contains automatically generated JSDOC files, release and installation notes and a disctionary/manifets file to verview the project doc/
components

Preferred Bundling Stack

MSCI prefers to use NPM as the core for the Javascript build and dependency management. NPM can be augmented with extra compile, build or package
time utilities as part of the NPM ecosystem.

The preferred build stack consists of the below technologies:

NPM fpr compile and build time dependency management and build
Webpack for build task management (bundling, minifiaction, pre-processing, tranpilation) and the governance model for the run-time dependency
(module) system (based on ECMA2016 modules)

HTML

Version

The preferred content type is HTML5 using the below DOCTYPE:

<!DOCTYPE html>

The page templates should be validated through . http://validator.w3.org/

Encoding

The character encoding of the UI source code files (HTML, CSS, Javascript) should be in UTF-8 and the language should be properly declared wherever
possible.

Identifiers and Naming conventions

DOM elements have to be marked with identifiers in the form of stylesheet class names or IDs (if they are unique) when they are functional parts of the
DOM. Try to avoid using in the HTML markup to avoid having to resolve later conflicts between independent widgets embedded into the ID attributes
same page. Please use instead.CSS class names

Placeholders for dynamically changing data
Have event handlers attached to them
Can be mutated by Javascript
Represent a logical structure, like sections, headers, footers, navigation, hover content, etc.

Naming Conventions

Naming conventions to respect

Class names and identifiers must be compact yet still carry meaning. The meaning should hint at the function and/or structural location of the
identified HTML element.
They must also be part of a namespace to avoid name collisions.
Avoid using general and frequently used CSS class names , like 'wrapper', 'content', 'box' etc., since they can easily be used in other parts of the
destination page.
Avoid using frame-work specific CSS class names for custom purposes, especially the ones, that are being used in Bootstrap, like 'col', 'row',
'hidden'. If you still use them, then use it in a way, recommended by the Bootsrap documentation or please reset/override them inside the widget
wrapper only.

"NAMESPACEPART-NAMEPART1{-... -NUMBER}"-NAMEPARTn}{

Examples:

Bad examples:
class="123ZH4"
class="margins"

Good examples:
class="msci-navigationFloat-2"
class="msci-perfChart-margins-1"
class="perfchart-padding"

http://validator.w3.org/

Comments

The HTML source code should be appropriately commented and pretty-formatted with indentation:

functionally important blocks or elements must include a short label and description
blocks must be marked with a START and END comment to help visual identification of boundaries

Example comment style:

<!-- START: Footer -->
<div id=”footer”>
 <div id="footer_inner"></div>
</div>
<!-- // END: Footer -->

Structure

The HTML design should reflect the visual page layout as best as it can. WYSIWYG stands true here too, meaning that visually looking at the page and
navigating across parts and components should be consistent with what is in the HTML structure:

Avoid self-modifying code which generates the final HTML using Javascript. IN other words the rendered HTML should closely follow tghe
downloaded HTML. Exemptions are certainly possible for example when 3rd party libraries render special widgets (charts, animatin, etc.) but
anything else must come from the server.
Horizontal and vertical positioning and neighborhood of components should follow the order of definition in the downloaded HTML. For example
the footer should be defined at the bottom of the source code and not floated across using special CSS or Javascript.
Do not use dynamic client-side inclusion of HTML sub-templates for things like the footer, header, etc.

Make use of the the HTML header tags to convey special META information for SEO and other purposes.

The use of HTML5 Semantic elements is encouraged () do denote semantically different http://www.w3schools.com/html/html5_semantic_elements.asp
sections.

The dynamic elements of the page (i.e. those areas which contain content that can change) should also be tested with content of varying length, to ensure
the basic template will not break if either content expands or the font size is increased, e.g. a dynamic element that contains a list of headlines in a “Latest
News” section of a homepage.

CSS
To style the HTML markup CSS is preferred over the use of HTML tags. Furthermore

Inline style definitions are not allowed
HTML property or tag based styling or skinning is not allowed, for example

use images with CSS classes instead of using the tag for icons & backgrounds.
padding and margin HTML attributes are not allowed

“CSS Sprites” should be used for managing icon states.
CSS should be used for layout of all elements in the page

Version

CSS version 3 must be used.

Structure and file separation

Static CSS code should be contained in as few files as possible. The recommendation is to have a one central main file “css/main.css” A separate print
version of the CSS needs to be provided, called “css/print.css”. This can be used to hide certain navigation elements or banner ads from the printed
version, and also address situations where light text is used on dark backgrounds.

Pre-Processors

For CSS pre-processors must be used. The delivered source package must contain everything that is required to do the compilation and build of the SASS
final static CSS elements:

The SASS source files
An example build project

with configuration and project files that can be executed in NPM, Grunt or Gulp and result in the static compiled CSS files
documentation on how to perform the setup and build

The static already compiled CSS files must also be included in a dedicated project folder or ZIP package

CSS Frameworks

http://www.w3schools.com/html/html5_semantic_elements.asp
http://sass-lang.com/

For structured UI widget elements, like form fields, grid layouts, sections, tables, etc. a CSS layout/design framework should be used to stay coherent and
to allow easier skinning and theming. Liferay 7.1 is using Clay, a Bootstrap 4 derivative for this so the suggested practice is to use Clay as the default CSS
(widget) framework.

Javascript

Javascript Version

Run-time required version is ,ES5
The source can be written in at most in ECMA2015 (ES6) Javascript.
However in . This requirement stems from the relatively high penetration of Internet the final distributable package it must be compiled/transpiled into ES5
Explorer. (See Browser statistics below)

3rd Party Libraries

The out of the box supported and accepted Javascript libraries and frameworks are listed below.

Liferay 7.1 provided standard Javascript libraries
jQuery v3.4.0 (see)https://help.liferay.com/hc/en-us/articles/360036751511-What-is-the-default-jquery-version-used-in-Liferay-7-1-
Charting and Data visualization

Highcharts v5.0.14 (2017-07-28)
Altair Vega chart libraries:

"msci-vega@4-v1.0.0" package:

Vega v4.3.0 ()https://cdn.jsdelivr.net/npm//vega@4.3.0
Vega-lite v2.6 ()https://cdn.jsdelivr.net/npm//vega-lite@2.6.0
Vega-embed v3.24.0 ()https://cdn.jsdelivr.net/npm//vega-embed@3.24.0

"msci-vega@5-v1.0.0" package:

Vega 5.10.0 ()https://cdn.jsdelivr.net/npm//vega@5.10.0
Vega-lite 4.0.2 ()https://cdn.jsdelivr.net/npm//vega-lite@4.0.2
Vega-embed v6.5.2 ()https://cdn.jsdelivr.net/npm//vega-embed@6.5.2

"msci-vega@5-v1.1.0" package:

Vega 5.10.1 ()https://cdn.jsdelivr.net/npm//vega@5.10.1
Vega-lite 4.8.1 ()https://cdn.jsdelivr.net/npm//vega-lite@4.8.1
Vega-embed v6.5.2 ()https://cdn.jsdelivr.net/npm//vega-embed@6.5.2

Three.js
Animation

GreenSock GSAP
Analytics

Hotjar
Demandbase
GA
Pardot

Other
Font Awesome 3.2.1 (which is part of the clay.css)

There can be other libraries considered, subject to pre-approval from MSCI. The considerations will be done along the below lines:

justification, i.e. what is the benefit of on boarding a new library (performed by implementation team)
licensing (performed by MSCI)
cost analysis (performed by MSCI)
compatibility check (performed by MSCI) with the existing frameworks used on the site
3rd party vendor and security-architecture review (performed by MSCI)

Code Conventions

MSCI does not maintain a custom code convention and/or notation. Instead, Dougles Crockford's Javascript coding conventions and styles from this
document should be adhered to:
https://www.crockford.com/code.html

It contins short and meaningful recommendations in the following areas:

Comments
Whitespaces
Declarations
Names and Labels
Statements

Error handling and Debugging

https://help.liferay.com/hc/en-us/articles/360036751511-What-is-the-default-jquery-version-used-in-Liferay-7-1-
https://cdn.jsdelivr.net/npm//vega@4.3.0
https://cdn.jsdelivr.net/npm//vega-lite@2.6.0
https://cdn.jsdelivr.net/npm//vega-embed@3.24.0
https://cdn.jsdelivr.net/npm//vega@5.10.0
https://cdn.jsdelivr.net/npm//vega-lite@4.0.2
https://cdn.jsdelivr.net/npm//vega-embed@6.5.2
https://cdn.jsdelivr.net/npm//vega@5.10.1
https://cdn.jsdelivr.net/npm//vega-lite@4.8.1
https://cdn.jsdelivr.net/npm//vega-embed@6.5.2
https://www.crockford.com/code.html

Provide source-maps along with bundles to ease debugging
Log in NONE, INFO, WARN and ERROR mode to the console and provide the means to change verbosity (by default it should be none)
For any web-service call use try-catch style error handling and anticipate and handle any erroneous or unexpected situations
Errors must never be silently ignored, empty catch blocks are not allowed.
Errors must be displayed on screen if they effect usability or functionality of the web pages, if not then a WARNING must be logged onto the
console
Debug handles and functionality must not have an adverse impact neither on performance nor on security if so, than the build flow must be
configurable to rebuild the DIST version with DEBUGGING turned OFF

Modularization and Scoping

With modularization and scoping aim to make the source code meet the following rules:

Isolation: to minimize unforeseen and unhanded interaction between your code and the rest of the code on the website pages (Liferay core UI
functionality, other MSCI page level customizations).
Reusability and Composition: Write once use many principle.

To achieve this you have to make the code modular. Since the preferred language Javascript compatibility level syntax is ES5 the run-time technique to
achieve this is by using namespaced IIFEs (Immediately Invoked Funcion Expressions). For the compile time source code however you can use ES6
standard modules and then have the bundler (WebPack) transpile them into IIFEs.

Refernce article: https://tylermcginnis.com/javascript-modules-iifes-commonjs-esmodules/

Bootstrapping

Bootstrapping will be handled differently if the delivered project is just a visual mock-up or is already in a Liferay format (converted to a portlet).

Liferay Portlet format

For using Javascript in portlet template code there are two standard Liferay style options:

A; embedd the JS code in the portlet and let Liferay minify and bundle it, then bootstrap the code from the portlet template HTML file
B; prepare a distributable version and the MSCI Web team will add that to our GTM (Google Tag Manager) rules.

Standalone JS app or Mockups

Prepare a distributable version using the project's bundler mechanism and let the entry-point HTML page initialize and bootstrap the application. The
inclusion and bootstrap mechanisms should be documented.

Website Analytics
If there are any analytics requirements in scope then they have to be clearly defined as part of the project documentation:

analytics framework to be used
UI events to be used as triggers for analytics reporting
message to be sent upon a triggered event
placeholder for the event

Any new project must be prepared to support the following analytics integration requirements:

Has to be compatible with MSCI's analytics technologies (see below). Compatibility means both not breaking existing analytics code and the
ability to feed events into our analytics stack.
The DOM structure must have named placeholders with IDs where analytics triggers can be easily attached to
The Javascriot and DOM events have to be made available for capturing by event handlers (e.g do not sink and terminate an onClick event)
Working in tandem with MSCI's Marketing department provide a list of all the events, elements and actions that will be used for tracking

MSCI's analytics stack

The below list summarizes the available analytics platforms at MSCI. Exact requirmeents and use-cases that would/should be built on top of them have to
be discussed with MSCI's Digital Marketing and IT/Web teams for feasibility.

Google Analytics: To be used to capture metrics on usage and website visitor interaction.
Pardot: To capture usage and interaction from marketing email campaign initiated website activity
Hotjar: To capture UX and UI performance and metrics
DemandBase: For B2B Account Based Marketing

Browser Support

https://tylermcginnis.com/javascript-modules-iifes-commonjs-esmodules/

Our client-base is mostly B2B type coming from corporate networks with a natural tendency towards using older browser stacks. Although in the last
couple of years IE browsers have drastically lost in popularity, and most of our users are now on Chrome, IE is still a factor we have to count with and
make the delivered code compatible for IE11.

Browser Support Requirements

The web pages must be tested to work on the below operating systems:.

Windows 10
Mac OS
IPhone
Android

Browsers:

Internet Explorer 11
Microsoft Edge (latest, latest-1)
Firefox (latest, latest-1)
Chrome (latest, latest-1)

Note: Apart from IE, the latest major version and the one before that with the highest minor version numbers must be supported. For example in December
/2019 Chrome latest was and the version before that would have been: 80.0.3987 79.0.3945

Statistics

Browsers visiting MSCI.com August 2019

IE browser versions visiting August 2019:msci.com

Different devices visiting August 2019:msci.com

 Mobile device branding visiting August 2019:msci.com

http://msci.com/
http://msci.com/
http://msci.com/
http://msci.com/

Screen resolution visiting August 2019:msci.com

Data Sources
Data must be separated from Code and Markup. Please provide the data-set which is displayed in a separate JSON object which is then parsed
by JavaScript and used to fill-in the charts and other data representation elements on the page
If the data is larger then a few hundred records, the display widgets must use AJAX calls to fetch the data from a remote JSON/WS APi
If visuals depend on the data, then the change of of data must allow a refresh of the visuals.

for example if the the underlying data-set changes for a bar chart then the bars must be resized. This must be done via exposing and an
APi call, something like doRefresh() which can be invoked manually
doRefresh() will redraw the chart with the modified data-set

Configuration
If there is a requirement to allow easy change of different aspects of the UI elements for example for non-technical personnel, than the variable
parameters must be externalized from the Code and Markup and placed into separate configuration
The configuration parameters must be stored in a dedicated JSON object which can be easily modified with actual config values during the server
side template generation

The code must expose an APi call, something like applyConfig() to allow re-initializing the Widget with the new configuration values
applyConfig() will reinitialize the widget so that the widget's new behavior or look and feel will reflect the modified configuration

Integration Tests
Since the widgets that will be developed can be part of an existing page on an existing website (it has to integrate without any errors into www.msci.com)
its surrounding page. We explicitly for integration due to the fact that IFRAMEs are hard to maintain from a SEO, UX and UI disallow using IFRAMEs
theme-ing perspective. Because of this please make sure that the delivered asset has been put through a series of integration tests.

During development and before hand-over you have to test the integration of the new widget by setting up a page which mimics the environwww.msci.com
ment where the widget will be published at go-live. This page will have all the static elements (CSS, images, HTML structure) cloned from an existing web-
page. You will need to ask MSCI Marketing to provide you with a sample live page on which you can clone into your local development www.msci.com
environment and test the embedding and integration of the asset you are developing. Once testing is complete you will need to include a zipped version of
the integration page with all of the elements of your asset. The test page will need to show that the following elements are included and the page and its
static integrity is still OK.

Acceptance criteria:

Layout ans structure stays the same
New asset CSS does not override or modify the surrounding elements and the embedding page's CSS rules
Page re-flow is not changed, i.e. when resizing the page to different viewport sizes the elements will not start to overlap, overflow, get hidden or
become inaccessible
The theme (skin) based design including fonts, colors, spacing, positions, sizes is retained

Meta Tags

Please use the following meta tags by default in the head section of the test page:

<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta content="initial-scale=1.0, width=device-width" name="viewport">

CSS Scope and Integration Test

http://msci.com/
http://www.msci.com)
http://www.msci.com
http://www.msci.com

Please embed MSCI!s default stylesheets in the head section of the test page. Please ask the MSCI Marketing or the IT/Web team to verify in which
environment the graphics are going to be displayed (MSCI Theme / MSCI Wealth Management Theme / MSCI Research Theme). Based on the
environment use the HEAD section to add the appropriate environment specific rules. With this in place all the built in styles will be provided by default
(font families, font sizes, colors, grid system, etc.). It will also can prevent style conflicts or unwanted side-effects.

<head>...
<!—NEW MSCI THEME -->
<link rel="stylesheet" href=" ">https://www.msci.com/o/msci/css/main.css
...
</head>

Add 'aui' as a CSS class to the HTML element, which is required to make the base Liferay theme's css rules work.

<html class="aui">
</html>

If the widget will be presented in the Wealth Management Theme, please add the following markup around the code:

 <div class="wrapper content_wrapper">
 <section class="msci-wealth-management-wrapper">
 <!-- Widget Markup comes here -->
 </div>
 </div>

HINTS

Make sure that your CSS will take effect only to the html code of the asset. Create a wrapper div around the HTML of the asset and add a unique CSS
class name to it (do not use id!)

Accepted usage for example:
<div class="rs-graphics-wrapper">
...
</div>

Do not use this:
<div id="wrapper">
...
</div>

In CSS prefix all CSS selectors to target the elements inside your wrapper only to prevent unwanded effects outside of the your code on the destination
page.
Accepted usage for example:

.rs-graphics-wrapper .box {
 }

Do not use this:

.box {
 }

JavaScript Scope and Integration Test

Include your asset's JavaScript libraries on the test page and bootstrap your widget. Check that their intended scope and effect stays within the desired
boundaries and there is no scope creep whereby JavaScript would effect unwanted components or sections of the page.

Error check: There are no errors displayed on the console. If there are analyze them and asses their impact. Inclusion of your widget/asset on
the page should not break on collision with other libraries that make up part of the embedding page.
Visual check: Visual changes introduced by your code are limited to the scope of your widget. Nothing else should get resized, get hidden,
moved around, etc.

Hints

Make sure that your JavaScript code manipulates the elements inside the wrapper only! Filter jQuery selectors to your wrapper to avoid manipulating
the HTML code accidentally around your widget on the page.

Accepted usage for example:

var $rsGraphicsWrapper = $('.rs-graphics-wrapper');
$('.box_main', $rsGraphicsWrapper).click(function() {
// ...
});

Do not use this:

$('.box_main').click(function() {
// ...
});

https://www.msci.com/o/msci/css/main.css

Layout Test

Please inquire about the embedding's (1 column, 2 columns 50-50%, 2 columns 30-70%, ...) and the new asset's page layout (and any grid system)
intended placeholder location. The test page should request the existing/desired layout with the new asset embedded into the desired placeholder location.
Implement additional media query rules based on the layout if required.

HINTS

Do not use fix heights or sizes for the embedding container, because these assets will likely be deposited among a host of textual content pieces and
fixed sizes will limit the natural flow of the components. White spaces can appear above or below the asset or the .
Please use in the media queries, since our theme is based on this, and it is easier to apply any fine-tuning or fixes to the widget. desktop first approach

Preferred usage of media queries for example:

@media(max-width:767px) {
 ...

}

Not recommended usage:

@media(min-width:768px) {
 ...

}

Web Content Accessibility
The Design should follow the Web Content Accessibility Guidelines (WCAG 2.0) where possible. We should adhere to Level A compliance (at a
minimum) as defined in the official guidelines at http://www.w3.org/TR/WCAG20

Animation and Interactions
Avoid the use of Adobe Flash technologies. Do not use Adobe Flex. Any animation and interaction must be created using HTML5 frameworks like Three.js
and GreenSock GSAP.

Forms development
Form design rules:

When designing forms use the standard Lifreay Clay or Bootstrap (V4) form designations and components
Provide the necessary client-side data input validation code (i.e. required fields, length constraints, date/e-mail format requirements). The form
design should include elements for any error messages to appear.
The preferred validation framework shall be based on Liferay Clay/Bootstrap and/or the jQuery validation framework. http://docs.jquery.com

;/Plugins/Validation
Form structure

use sections to delimit logical groups
fields should have an associated <label> tag

Forms pages may require CAPTCHA validation (or an alternative). If this is the case then we prefer the use of Google’s reCaptcha.

Pop-ups and IFRAMEs
The use of browser windows pop-ups is not allowed; instead the use of inline modal windows (through the use of CSS/JavaScript) is preferred.

IFRAMEs are not allowed. Widget integration should be done via adding a DIV tag which contains the widget!s DOM subtree.

Images and Artwork
In general, we expect web-optimized JPGs/GIFs for one-off artwork. For larger projects – or artwork that is intended to be re-purposed in the future – we
expect the original, layered PSDs (compatible with Photoshop CS4). Appropriate use of vector versus raster (bitmap) based images is expected. If Adobe
Illustrator is used in the design process, then the original Illustrator files should also be provided.

Images should be sensibly and descriptively named (i.e. not “logo.gif”, “ad.jpg”). Use hyphens in filenames instead of underscores.
No resizing in HTML. Small, medium and large images should be supplied instead.
No hard coded text to be placed in images. Alt text to be provided for all images.

Screenshots of the delivered static pages must be be provided for the following screen resolutions:

http://www.w3.org/TR/WCAG20
http://docs.jquery.com/Plugins/Validation
http://docs.jquery.com/Plugins/Validation

768px for Small phones (iOS, Android 6.0+)
1024px for Medium Tablets (iOS, Android 6.0+)
1280px for Desktop/Laptop + Mobile devices (Windows, Mac)
1920px for HD Desktop/Laptop (Windows, Mac)

Performance
We expect pages to render using Chrome latest on a standard office desktop. within 2 seconds
Page rendering times are affected by a number of factors one of which is size. To assist with page rendering the following limitations are proposed:

Total Page limit size limit – including all Javascript/CSS/flv – 300k
Single Image size limit – 95k for desktop or tablet, 20k for mobile devices
Animations (ads) – 500k
Elements (unique HTTP requests) – less than 80
Number of Javascript files – maximum of 4
Number of CSS files – maximum of 2

In-page refresh

In case when user input is sent back to the servers, avoid using full page refresh after form submission. Use ajax calls instead and re-render only the
sections that need updating.
Ajax calls can be achieved via Portlet Resource calls, or Service Builder JSON Webservice.

	UI Technical Requirements

