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EXECUTIVE SUMMARY

When RiskMetrics announced  Value-at-Risk (VaR) as its stated 

measure of risk in 1996, it initiated an industry standard for 

institutional risk management which was quickly adopted by 

the Basel Committee. By 1998, academic researchers began to 

critique VaR as a risk measure with structural drawbacks, saying 

it should be replaced by a statistically coherent method. In 2001, 

an alternative was proposed: Expected Shortfall (ES). Practitioners 

worldwide adopted ES in parallel with VaR, citing how ES could 

detect tail risk and offered better mathematical properties for 

portfolio risk aggregation (i.e., sub-additivity). 

For the next 15 years, academic debates over VaR versus ES 

often reached impassioned levels.  During this era, Barra and 

Riskmetrics both introduced ES in their analytics toolkit, leaving it 

up to clients to choose between VaR or ES.  Until recently, VaR was 

the measure required by  regulators.  

However, in October 2013, The Basel Committee on Banking 

Supervision proposed a  fundamental overhaul of its bank trading- 

book rules after finding discrepancies among banks, in an effort 

to capture the types of losses lenders might suffer in a period of 

significant financial stress.  Part of this proposal was to change the 

measurement method for calculating losses from the usual method 

of VAR to an alternative known as “Expected Shortfall”  which 

regulators believed will better capture the extreme losses that can 

occur during times of systemic turmoil.  

This proposal was criticized though because a research paper 

published in 2011 had demonstrated that  Expected Shortfall (ES) 

does not possess a mathematical property called elicitability,  

leading people to believe that that Expected Shortfall could not be 

back-tested, either.  

In this white paper, we join the debate over Expected Shortfall 

versus VaR by introducing three model-independent, non-

parametric back-test methodologies for Expected Shortfall, which 

we find more powerful than today’s standard Basel VaR test. Our 

three Expected Shortfall back-test’s generally require the storage 

of more information, but we find no conceptual limitations nor 

computational difficulties. In fact, one of the proposed back tests 

does not require any additional storage of data from a normal VaR 

back-test. In addition, we affirm that elicitability has to do with 

model selection and not model testing, making it almost irrelevant 

for choosing a  regulatory risk standard.
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Abstract

The discovery in 2011 that the Expected Shortfall (ES) is not elic-
itable, diffused the erroneous belief that it could not be backtested. This
misconception aroused a number of criticisms to the recent decision of
the Basel Committee to adopt ES in spite of V aR. We contribute to
this debate in various ways. First of all, we introduce three model–free,
nonparametric backtest methodologies for Expected Shortfall which are
shown to be more powerful than the Basel V aR test. These tests generally
require the storage of more information, but introduce no conceptual lim-
itations nor computational difficulties of any sort. One of the proposed
tests doesn’t even require the storage of additional data. Secondly, we
observe that elicitability has in fact to do with model selection and not
with model testing, and is therefore irrelevant for the choice of a regula-
tory risk standard. Finally, we show that ES can in practice be jointly
elicited with V aR, but while this may turn out to be a useful result for
model selection purposes, we remain convinced that it will not impact the
regulatory debate in any respect.

“Eliciwhat?”
Risk professionals had never heard of elicitability until 2011, when [13]

proved that Expected Shortfall (ES) is not elicitable as opposed to Value at
Risk (V aR). This result sparked a confusing debate.

Put it simply, a statistics ψ(Y ) of a random variable Y is said to be elicitable
if it minimizes the expected value of a scoring function S:

ψ = arg min
x

E[S(x, Y )]

Given a history of point predictions xt for the statistics and realizations yt of
the random variable, this provides a natural way to evaluate the forecast model,
by requiring that the mean score

S̄ =
1

T

T∑
t=1

S(xt, yt)

∗carlo.acerbi@msci.com
†balazs.szekely@msci.com
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be as low as possible. The mean and the median represent popular examples,
minimizing the mean square and absolute error, respectively. The α–quantile,
hence V aR, is also elicitable, with score function S(x, y) = ((x > y)−α)(x−y),
a well known fact in quantile estimation.

The discovery that ES cannot be elicited led many to conclude that ES
would not be backtestable (see for instance [8]) and sounded like the formal
proof of a fact that had long been suspected. It is a fact that the absence of a
convincing backtest has long been the last obstacle for ES on its way to Basel,
as prophesied already in [21].

In October 2013, a consultation paper from the Basel Committee [5] opted
to replace V aR with ES for determining the capital charge of internal based
models, but kept V aR as the measure to backtest in the usual way. The change
was criticized, based on the alleged impossibility to backtest ES, interpreted as
a sign that there’s something inherently wrong with this risk measure altogether.

Not everyone, however, was convinced. If elicitable means backtestable, how
about the few but valuable works on ES backtesting, like [14], which concluded
that “contrary to common belief, ES is not harder to backtest than V aR...
Furthermore, the power of the test for ES is considerably higher”? And what
should we do with variance, given that it’s not elicitable either? Or why has
V aR never been backtested by exploiting its elicitability? At a certain point
some dissenting voices started to emerge [11, 20].

In what sense – if any – is it more difficult to backtest ES than V aR? Funda-
mental reasons? Practical aspects? Power of the test? Model risk? To address
these questions we introduce some statistical tests for ES and we compare them
with V aR backtests. We restrict our choice to tests which are non–parametric
and free from distributional assumptions other than continuity, necessary con-
ditions for any application in banking regulation.

1 Backtesting ES

We adopt a standard hypothesis testing framework for unconditional coverage of
ES analogous to the standard Basel V aR setting. We assume that independence
of arrival of tail events is tested separately, typically by just visual inspection
of V aR exception clusters. This is still the preferred practice in the industry as
it provides better insight than proposed tests such as [9, 12].

We assume that every day t = 1, . . . , T , Xt represents a bank’s profit–loss
distributed along a real (unknowable) distribution Ft and it is forecasted by
a model predictive distribution Pt conditional to previous information used to
compute V aRβ,t and ESα,t as defined by (see [1])

ESα,t = − 1

α

∫ α

0

P−1t (q)dq (1)

The random variables ~X = {Xt} are assumed to be independent, but not iden-
tically distributed. We do not restrict in any respect the variability of Ft and Pt
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over time. We will denote by V aRFα,t and ESFα,t the value of the risk measures
when X ∼ F .

We assume in what follows that the distributions are continuous and strictly
increasing, in which case ES can be expressed as

ESα,t = −E[Xt|Xt + V aRα,t < 0] (2)

and V aR is uniquely defined as V aRβ,t = −P−1t (β). In real cases, this assump-
tion is completely innocuous1.

Without loss of generality in our numerical examples we will use T = 250,
β = 1% and α = 2.5%, the relevant case in [5]. ES2.5% was correctly chosen by
the Committee to equal V aR1% for Gaussian tails, and penalize heavier tails.
This is analogous to replacing 50 with 80 in road signs when switching from
mph to km/h.

Our null hypothesis generically assumes that the prediction is correct, while
the alternative hypotheses are chosen to be only in the direction of risk under-
estimation. This is again in line with the Basel V aR test, which is meant to
detect only excesses of V aR exceptions. We formulate more precise test–specific
H0 and H1 below. Concrete examples of H1’s will be analyzed in section 2.2 to
compute the power of tests in selected cases, similar to the approach followed
in table 1 of [5] for different levels of V aR coverage mismatch.

1.1 Test 1: testing ES after V aR

Our first test is inspired by the conditional expectation (2), from which we can
easily derive

E
[

Xt

ESα,t
+ 1

∣∣∣∣Xt + V aRα,t < 0

]
= 0 (3)

If V aRα,t has been tested already we can separately test the magnitude of the
realized exceptions against the model predictions. Defining It = (Xt+V aRα,t <
0), the indicator function of an α–exception, we define the test statistics.

Z1( ~X) =

∑T
t=1

Xt It
ESα,t

NT
+ 1 (4)

if NT =
∑T
t=1 It > 0.

For this test we choose a null hypothesis

H0 : P
[α]
t = F

[α]
t , ∀t

where P
[α]
t (x) = min(1, Pt(x)/α) is the distribution tail for x < −V aRα,t. The

alternatives are

H1 : ESFα,t ≥ ESα,t, for all t and > for some t
V aRFα,t = V aRα,t, for all t

1We also assume that V aRα > 0 as it happens in a realistic portfolio p&l distribution
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We see that the predicted V aRα is still correct under H1, in line with the idea
that this test is subordinated to a preliminary V aR test. This test is in fact
completely insensitive to an excessive number of exceptions as it’s an average
taken over exceptions themselves.

Under these conditions EH0
[Z1|NT > 0] = 0 and EH1

[Z1|NT > 0] < 0
(proposition A.2). So, the realized value Z1(~x) is expected to be zero, and it
signals a problem when it is negative.

Dividing eq. (3) by ESα,t was unnecessary. Normalizing by another statistic
of Pt or not normalizing at all, would have given other legitimate tests. Our
choice was made to obtain a dimensionless test statistics and to control for
heteroscedasticity.

Variations of this test appeared in the literature already several times. For
instance, already [18] proposed something similar in a GARCH-EVT context.

1.2 Test 2: testing ES directly

A second test follows from the unconditional expectation

ESα,t = −E
[
Xt It
α

]
(5)

that suggests to define

Z2( ~X) =

T∑
t=1

Xt It
T αESα,t

+ 1 (6)

Appropriate hypotheses for this test are

H0 : P
[α]
t = F

[α]
t , ∀t

H1 : ESFα,t ≥ ESα,t, for all t and > for some t
V aRFα,t ≥ V aRα,t, for all t

We have again EH0
[Z2] = 0 and EH1

[Z2] < 0 (proposition A.3). Remarkably,
these results do not require independence of the Xt’s. Furthermore, the test can
be immediately extended to general, non–continuous distributions, by replacing
It with

I ′t = (Xt + V aRα,t < 0) +
α− Prob[Xt + V aRα,t < 0]

Prob[Xt + V aRα,t = 0]
(Xt + V aRα,t = 0);

see eq. (4.12) in [1].
Test 2 jointly evaluates frequency and magnitude of α–tail events as shown

by the relationship

Z2 = 1− (1− Z1)
NT
T α

(7)

remembering that EH0 [NT ] = T α.
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We remark that both tests 1 and 2 might have been defined under the weaker
null hypothesis

H ′0 : ESFα,t = ESα,t, for all t
V aRFα,t = V aRα,t, for all t

(8)

all the above results holding true. This choice however would have not been
sufficient to simulate the test statistics and compute p-values (see section 2).

1.3 Test 3: estimating ES from realized ranks

Following [10, 7] it is possible to backtest the tails of a model by checking if
the observed ranks Ut = Pt(Xt) are i.i.d. U(0, 1) as they should if the model
distribution is correct. To convert this idea into a specific test for ES, we must
assign to each quantile its dollar importance that depends on the shape of the
tail itself. To this purpose, denoting with2

ÊS
(N)

α (~Y ) = − 1

[Nα]

[Nα]∑
i

Yi:N (9)

an ES estimator based on a vector of N i.i.d draws ~Y = {Yi}, we define

Z3( ~X) = − 1

T

T∑
t=1

ÊS
(T )

α (P−1t (~U))

EV
[
ÊS

(T )

α (P−1t (~V ))

] + 1 (10)

where ~V are i.i.d. U(0, 1). The idea is that the entire vector of ranks ~U = {Ut}
is reused to estimate ES in every past day t, and the result is then averaged
over the entire period3. In the denominator we don’t have ESα,t, but a finite
sample estimate to compensate for the bias of estimator (9). The denominator
can be computed analytically via

EV
[
ÊS

(T )

α (P−1t (~V ))

]
= − T

[Tα]

∫ 1

0

I1−p(T − [Tα], [Tα])P−1t (p) dp (11)

where the function Ix(a, b) is a regularized incomplete beta function (proposition
A.5).

Also in this case EH0
[Z3] = 0 and EH1

[Z3] < 0 (proposition A.4). However,
the hypotheses involve this time the entire distributions:

H0 : Pt = Ft, ∀t
H1 : Pt � Ft, for all t and � for some t

where (�) � denotes (weak) first order stochastic dominance.
Test 3 is less natural than tests 1 and 2, but it is extremely general. A

similar test may be designed for any other conceivable statistics for which an
estimator is available.

2[x] is the integer part of x and Yi:N denotes order statistics.
3We could as well have chosen just the distribution Pt? of a specific day, for instance the

last one t? = T .
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2 Test Significance and Power

2.1 Significance

For all tests Z = Zi we simulate the distribution PZ under H0 to compute the
p–value p = PZ(Z(~x)) of a realization Z(~x):

simulate independent Xi
t ∼ Pt, ∀t, ∀i = 1, . . . ,M

compute Zi = Z( ~Xi)

estimate p =
∑M
i=1(Zi < Z(~x))/M

(12)

where M is a suitably large number of scenarios. Given a preassigned signifi-
cance level φ, the test is finally accepted or rejected if p ≷ φ.

From the above procedure, we see that while to backtest V aR exceptions
it’s sufficient to record a single number It per day, to backtest ES it may be
necessary to keep memory of the entire predictive distributions Pt.

In reality, for Z1 and Z2 it is sufficient to record only the α–tail P
[α]
t of the

predictive distributions, because XtIt can be simulated after It ∼ Bernoulli(α).
We will see in section 2.3 that in fact Z2 lends itself to implementations that do
not even require the recording of the predictive distributions.

Storage of more information (a cumulative distribution function per day) is
the only difference between backtesting ES and V aR. A practical difference
only which poses no technological challenge.

2.2 Power

In the next subsections we run a number of experiments to evaluate the power
of the ES2.5% tests and compare it to the power of the Basel V aR1% test under
selected hypotheses. The examples are based on Student-t distributions which
allow to span all possible fat tails indexes. Figure 1 at page 21 shows how to read
the results of every experiment. The green vertical lines in the following plots
correspond to exactly 5% and 10% significance level, while the black vertical
lines are the corresponding closest discrete levels attainable by the V aR test.

The results are summarized in tables in which the left part describes the
setup of H0 and H1 and the right part the power of tests. Every row in the
tables corresponds to one of the significance levels attainable by the V aR test.

Z1 is not applicable to the examples in which V aR2.5% varies across the
alternatives.

2.2.1 Scaled distributions: ES coverage

We assume that H1 is a rescaled version of the H0 distribution: F (x) = P (x/γ),
γ > 1, as shown in figure 2. We assume certain levels of ES coverage mismatch,
assuming ESPα = ESFα′ for α′ = 5%, 10% so that γ = ESPα /ES

P
α′ . The results

are shown in table 1 and in figures 3 and 4 in which H0 is chosen to be ν = 100
and ν = 5 respectively.
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In these cases, Z2 clearly outperforms the V aR test in terms of power. Z3

has instead slightly less power for smaller tail index.

ν α′ (%) V aR1% ES2.5%

5 2.5 3.36 3.52
5 4.10 4.29

10 5.14 5.38
100 2.5 2.36 2.37

5 2.68 2.70
10 3.16 3.18

Power
ν Significance Coverage Scale Z2 Z3 V aR1%

level (%) α′ (%) γ (%) (%) (%) (%)
5 4.1 5 21.9 51.8 25.2 37.4

10 53 98.5 78.3 93.5
10.6 5 21.9 69.0 46.4 55.7

10 53 99.5 92.9 97.3
100 4.0 5 13.7 47.1 39.0 38.8

10 34 97.4 94.1 94.2
10.8 5 13.7 64.7 59.1 56.3

10 34 99.0 98.1 97.6

Table 1: Power of multiple tests for scaled distributions with different ES
coverage as explained in Section 2.2.1.

2.2.2 Student-t distributions

We choose H1 to be a Student-t distribution with smaller ν than H0, see figure
5. Notice that in this way the variance will also be larger, as σ2 = ν/(ν − 2).
We analyze ν = 100, 10, 5, 3 in figure 6 and ν = 10, 5, 3 in figure 7. We analyze
two H0’s with tail-indexes ν = 10, 100 in table 2.

In this case, Z3 is the most powerful, followed by Z2 and by the V aR test.

2.2.3 Normalized Student-t distributions

We repeat the previous experiment using normalized Student-t distributions
with unit variance (figure 5). In this case the difference between H0 and H1 is
only due to tail properties and not larger variance. The results are reported in
figures 9 and 10 and in the bottom half of table 2.

This case is particularly subtle. Both Z2 and the V aR test display very little
power at all, with V aR doing slightly better. Z3, on the contrary, performs quite
well.

2.2.4 Fixed V aR2.5% Student-t distributions

In order to analyze Z1, we repeat experiments 2.2.2 and 2.2.3 also shifting the
H1 distributions in such a way to leave V aR2.5% unchanged, as in figure 11.
The results are reported in table 3 and in figures 12 and 13.
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ν V aR1% ES2.5%

Student-t 100 2.36 2.37
10 2.76 2.81
5 3.36 3.52
3 4.54 5.04

Normalized 100 2.34 2.35
Student-t 10 2.47 2.52

5 2.60 2.72
3 2.62 2.90

Power
ν Significance ν Z2 Z3 V aR1%

in H0 level (%) in H1 (%) (%) (%)
Student-t 10 4.0 5 43.4 48.9 37.7

3 92.3 94.0 87.1
10.6 5 61.3 66.1 55.5

3 96.5 97.1 93.5
100 4.1 10 40.9 54.8 38.2

3 99.3 99.8 98.5
10.4 10 57.7 67.7 56.3

3 99.6 99.9 99.5
Normalized 10 4.4 5 7.8 18.7 9.0

Student-t 3 8.6 31.4 7.4
11.2 5 16.5 30.6 18.7

3 16.0 41.1 16.8
100 4.4 10 8.2 22.1 10.5

3 12.3 49.1 12.0
11.0 10 17.9 34.3 21.6

3 20.5 56.6 24.5

Table 2: Power of multiple tests for varying tail indexes in H1. Student-t
(Subsection 2.2.2) and normalized Student-t (Subsection 2.2.3) distributions
are investigated.

Also in this case, Z2 and the V aR test display modest power. On the other
hand, both Z1 and Z3 perform very well.

2.2.5 Comment to results

In these, and other experiments that have been performed, Z2 has proven the
most powerful in the case of alternative hypotheses with different volatility,
while Z3 and Z1 were the most powerful in the case of different tail index. The
V aR exceptions test is generally significantly less powerful.

2.3 Avoiding storage of predictive distributions for Z2

The critical levels for Z2 display remarkable stability across different distribution
types. Table 4 illustrates the levels for 5% and 0.01% significance, the same as
in the Basel traffic–light mechanism, for Student-t distributions with different ν
and mean. It is clear that a traffic–light based on Z2 with fixed levels Z?2 = −0.7
and Z?2 = −1.8 would perfectly do in all occasions. Notice that the ±1 location
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ν V aR1% ES2.5%

Student-t 100 2.36 2.37
10 2.51 2.57
5 2.77 2.93
3 3.34 3.84

Normalized 100 2.34 2.35
Student-t 10 2.44 2.49

5 2.57 2.70
3 2.74 3.03

Power
ν Significance ν Z1 Z2 Z3 V aR1%

in H0 level (%) in H1 (%) (%) (%) (%)
Student-t 10 4.1 5 28.6 11.1 27.4 12.0

3 72.7 28.8 62.8 24.9
10.7 5 43.7 20.4 39.1 24.4

3 82.2 39.8 70.6 41.6
100 4.3 10 28.2 7.7 25.1 11.0

3 91.7 38.5 79.5 33.6
10.9 10 43.2 15.9 36.3 22.1

3 94.4 49.1 83.3 50.8
Normalized 10 4.2 5 20.1 7.9 19.0 8.7

Student-t 3 44.7 16.0 39.3 13.8
11.4 5 33.5 16.8 29.9 18.8

3 58.5 27.5 50.2 26.9
100 4.1 10 21.2 6.0 18.9 8.3

3 70.3 19.6 59.8 20.7
11.1 10 35.2 13.7 29.4 18.6

3 79.2 31.4 67.4 35.9

Table 3: Power of multiple tests in the experiment of Section 2.2.4 similar to
table 2 but with distributions with fixed V aR2.5%.

shifts span an unrealistically large region for a real profit–loss distribution, which
is expected to be centered around zero. Notice also that the thresholds deviate
significantly only for dramatically heavy tailed distributions, with ν = 3, and
that in this case the proposed test would be more penalizing, which is probably
a good thing, given that such tails represent a problem by themselves.

The important fact behind this stability is that for implementing Z2 there
is effectively no need to do a MC test and therefore no need to store predictive
distributions. Testing Z2 requires to record only two numbers per day, the
magnitude XtIt of a V aRα,t exception and the predicted ESα,t.

3 Back to elicitability

Now that we have seen that elicitability is not necessary for backtesting, we
argue something more: elicitability has in fact nothing to do with backtesting.
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Significance
5% 0.01%

location location
ν -1 0 1 -1 0 1
3 -0.78 -0.82 -0.88 -3.9 -4.4 -5.5
5 -0.72 -0.74 -0.78 -1.9 -2.0 -2.3
10 -0.70 -0.71 -0.74 -1.8 -1.9 -1.9
100 -0.70 -0.70 -0.72 -1.8 -1.8 -1.9
Gaussian -0.70 -0.70 -0.72 -1.8 -1.8 -1.9

Table 4: 5% and 0.01% significance thresholds for Z2 across Student-t distribu-
tions with different ν and location

3.1 Model selection, not model testing

Elicitability allows to compare in a natural way (yet not the only way) different
models that forecast a statistics in the exact same sequence of events, while
recording only point predictions. For instance, if a bank A has multiple V aR
models in place for its p&l, the mean score can be used to select the best in
class. But this is model selection, not model testing. It’s a relative ranking not
an absolute validation.

Regulators on the contrary need to validate individual models from different
banks on an absolute scale. To this purpose, elicitability is of no use. A hy-
pothesis test based on elicitability would still require either the collection of the
predictive distributions or strong distributional assumptions, with no guarantee
of better power a priori.

It is then no coincidence that despite V aR being elicitable, V aR backtests
are still based on counting exceptions. If these tests are simple and entail the
recording of just one number, it’s not because V aR is elicitabile, but because
quantiles define a Bernoulli random variable. Any other elicitable statistic sim-
ply does not.

3.2 Expectiles

Expectiles [19] have recently attracted a lot of interest (see for instance [17])
because they are the only coherent law–invariant measure of risk which is also
elicitable [6, 22]. But if, as we have seen, absence of elicitability is not a seri-
ous problem for a regulatory risk standard, absence of comonotonic additivity
certainly is. An expectile ρ will tell you that a long position in a call option
C is partially hedged by a long (yes, long) position in the underlying stock S:
ρ(C + S) < ρ(C) + ρ(S). Even V aR would look perplex.

The class of comonotonic additive coherent measures of risk of law–invariant
type has been completely classified [15] and coincide with spectral measures of
risk [2, 4], which contain ES as the most popular example. Alternative choices
that are not law–invariant belong to the realm of stress–test based measures,
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which is incidentally the direction the FED seems to be considering with in-
creasing interest.

3.3 Joint elicitability of ES and V aR

An intuitive if not rigorous way to understand why ES is not elicitable is to
notice that there exists no expression of the type

E[L(X,ES)] = 0

where L is a function involving only a random variable and its ES. If such a
function existed we could interpret it as

L(X,ES) =
∂S(X, e)

∂e

∣∣∣∣
e=ES

and integrate it with respect to e to build a scoring function S that elicits ES.
However, there exist null expectations that involve both ES and V aR. For
instance

E[(X + ES)(X + V aR < 0)] = 0

E[X(X + V aR < 0) + αES] = 0
(13)

It is therefore clear that if there’s a chance to build a scoring function for ES,
this needs to involve V aR as well. Starting from the above expressions, it is in
fact not difficult to construct a one–parameter family of scoring functions

SW (v, e, x) = αe2/2 +Wαv2/2− αev +
(
e(v + x) +W (x2 − v2)/2

)
(x+ v < 0)

(14)
for every W ∈ R, that jointly elicit V aR and ES

{V aR,ES} = arg min
v,e

E[SW (v, e,X)] (15)

under the condition that V aR · W > ES. Notice that for any fixed W one
can imagine a bizarre distribution (e.g. a ν = 1 + ε Student–t with ε > 0
small enough) that violates this condition, so strictly speaking, this is not a
mathematical proof of 2–elicitability in the sense of [16], as was proven for
variance and mean. However, from a practical point of view, it is easy to choose
a value for W large enough for any specific case at hand.

As a side remark, we observe that theoretical results showing that a measure
is not elicitable may still not preclude that it is in practice elicitable. We still
don’t know whether V aR and ES are jointly elicitable or not, and we wouldn’t
be surprised to discover that they are not, but we already know that in practice
they are.

We note that this result opens new ways to set up selections for ES models,
but in the light of the observations made in 3.1 it does not add anything to ES
as a candidate for regulatory standards.
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4 Conclusions

ES can be backtested. The most important contribution of our work is to
define three ES backtest methods which are non–parametric, distribution in-
dependent, and do not assume any asymptotic convergence. The tests are easy
to implement and generally display better power than the standard Basel V aR
backtest. The only additional complexity they bring about is the necessity to
record the predicted cumulative distribution function day by day. This is even
unnecessary for Z2, which exhibits a remarkable stability of the critical levels
across different tail shapes.

Elicitability of a risk measure is not relevant for an absolute model validation.
This property is useful for relative comparison of different models forecasting
the same process, namely for model selection. Non elicitability of a risk measure
does not preclude the possibility to backtest it efficiently and elicitability of V aR
will never provide a better alternative to backtest it by just counting exceptions.

We provide some intuition as to why ES is not individually elicitable. From
this fact, we learn how to build a scoring functional that jointly elicits ES and
V aR. The result is new and generally important for ES model selection, but
we don’t think it will impact, in any respect, the regulatory debate around V aR
and ES.

We believe that Z1, together with the standard Basel V aR backtest or al-
ternatively Z2 alone, represent valid proposals to backtest models for ES based
regulation. Z3 is also a valid test, but it seems more appropriate as a comple-
mentary test to detect tail index mispecification only.

Acknowledgments: We are indebted to Tilmann Gneiting, Dirk Tasche
and an anonymous referee for many corrections and enriching discussions. We
are grateful to Imre Kondor for spurring this research and for organizing the
“International workshop on systemic risk and regulatory market risk measures”
in Pullach, where a preliminary version of this work was first presented.
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A Proofs

We provide the proof to some key results used in the article. First of all we
prove the following general

Lemma A.1. Let Xi, i = 1, . . . , T be i.i.d. draws from a continuous and strictly
increasing distribution F and assume V aRα = −F−1(α) is known. Denote as

usual Ii = (Xi + V aRα < 0) and NT =
∑T
i=1 Ii. Define the estimator

ÊS
(N)

α (X) = −
∑N
i=1Xi Ii
NT

(16)

if NT > 0.

Then, ÊS
(N)

α (X) is a conditionally unbiased estimator of ESα(X), that is,

E
[
ÊS

(N)

α (X)

∣∣∣∣NT > 0

]
= ESα. (17)

Proof: Conditioning first on the Ii’s and then using the independence of
the Xi, we get

E
[
ÊS

(N)

α

∣∣∣∣NT > 0

]
= E

[
− 1

NT

∑
i

Xi Ii

∣∣∣∣∣NT > 0

]

= E

[
E

[
− 1

NT

∑
i

Xi Ii

∣∣∣∣∣ I1, . . . , IT
]∣∣∣∣∣NT > 0

]

= E

[
− 1

NT

∑
i

Ii E[Xi | Ii]

∣∣∣∣∣NT > 0

]

= E

[
1

NT

∑
i

IiESα

∣∣∣∣∣NT > 0

]
= ESα.

Note that IiE[Xi|Ii] = −IiESα holds regardless of the value Ii. �

We now consider the setting adopted throughout the paper. We denote
independent r.v.’s Xt ∼ Ft for t = 1, . . . , T . We denote by ESα,t and V aRα,t
the statistics computed from predictive distributions Pt, It = (Xt+V aRα,t < 0)
the indicator function of a V aR exception and NT =

∑
t It the overall number of

exceptions. All distribution functions are assumed to be continuous and strictly
increasing. We also assume V aRα,t > 0 and a fortiori ESα,t > 0 throughout.

The properties of Z1 are proven below under null hypothesis (8) which is
weaker than in section 1.1.
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Proposition A.2. In the test hypotheses

H0 : ESFα,t = ESα,t, for all t
V aRFα,t = V aRα,t, for all t

H1 : ESFα,t ≥ ESα,t, for all t and > for some t
V aRFα,t = V aRα,t, for all t

we have

1. EH0 [Z1|NT > 0] = 0

2. EH1
[Z1|NT > 0] < 0

Proof: 1. Similar to lemma A.1. Assuming H0, implies that ESα,t =
ESPα,t = ESFα,t and It = IPt = IFt

EH0
[Z1|NT > 0] = EH0

[
1

NT

∑
t

Xt It
ESα,t

+ 1

∣∣∣∣∣NT > 0

]

= EH0

[
EH0

[
1

NT

∑
t

Xt It
ESα,t

∣∣∣∣∣ I1, . . . , IT
]

+ 1

∣∣∣∣∣NT > 0

]

= EH0

[
1

NT

∑
t

It
EH0 [Xt | IFt ]

ESα,t
+ 1

∣∣∣∣∣NT > 0

]

= EH0

[
− 1

NT

∑
t

ItES
F
α,t

ESα,t
+ 1

∣∣∣∣∣NT > 0

]
= 0

where we have used independence of Xt’s to condition on a single It only.
2. Let’s assume H1. Along the same lines as before, we have

EH1
[Z1|NT > 0] = EH1

[
1

NT

∑
t

It
EH1 [Xt | It]
ESα,t

+ 1

∣∣∣∣∣NT > 0

]

= EH1

[
1

NT

∑
t

It
EH1

[Xt | IFt ]

ESα,t
+ 1

∣∣∣∣∣NT > 0

]

= EH1

[
− 1

NT

∑
t

ItES
F
α,t

ESPα,t
+ 1

∣∣∣∣∣NT > 0

]
< 0

Notice that we used the fact that under H1 we assume V aRFα,t = V aRPα,t so

that IFt = IPt = It. The last step follows from ESFα,t ≥ ESPα,t > 0 which holds
for all t and the inequality is strict for some t. �

The properties of Z2 are proven below under weaker H0 than in section 1.2.
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Proposition A.3. In the test hypotheses

H0 : ESFα,t = ESα,t, for all t
V aRFα,t = V aRα,t, for all t

H1 : ESFα,t ≥ ESα,t, for all t and > for some t
V aRFα,t ≥ V aRα,t, for all t

we have

1. EH0 [Z2] = 0

2. EH1
[Z2] < 0

Proof: 1. From identity (5) we have

EH0

[
Xt It
αESα,t

+ 1

]
= 0, ∀t

The conclusion follows from definition (6).
2. The assumption V aRPα,t ≤ V aRFα,t implies that IFt ≤ It. Using this fact

and Xt < 0 if It = 1 (here we use V aRPα,t > 0), we get XtIt ≤ XtI
F
t . Taking

expectation, we have

EH1
[XtIt] ≤ EH1

[
XtI

F
t

]
= −αESFt ≤ −αESPt .

Under H1 the last inequality holds for all t and it is strict for some t. The
conclusion then follows from definition (6). �

Remarkably, the previous proposition holds even if the Xt are not indepen-
dent.

The properties of Z3 follow from

Proposition A.4. In the test hypotheses of section 1.3

1. EH0
[Z3] = 0

2. EH1 [Z3] < 0

Proof: 1. Under H0 we have Ut = Pt(Xt) ∼ U(0, 1). The conclusion
directly follows from the definition (10).

2. Under H1, for any fixed t the variables P−1t (U) ∼ Ft are stochastically

dominated by P−1t (V ) ∼ Pt where V ∼ U(0, 1). The estimator ÊS is consistent

with stochastic dominance, so EH1
[ÊS

(T )

α (P−1t (~U))] ≥ EV [ÊS
(T )

α (P−1t (~V ))] for
all t and the inequality is strict for some t. Conclusion then follows directly
from definition (10). �

We prove the following result on the bias of the ES estimator
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Proposition A.5. Let Yi, i = 1, . . . , n be i.i.d. draws from a continuous and
strictly increasing distribution F . The expected value of the estimator (9) can
be expressed as

E
[
ÊS

(n)

α (~Y )

]
= − n

[nα]

∫ 1

0

I1−p(n− [nα], [nα])F−1(p) dp (18)

where the function Ix(a, b) is a regularized incomplete beta function.

Proof: The distribution density of the order statistics Yk:n is given by

fk(y) = n f(y)

(
n− 1

k − 1

)
F (y)k−1(1− F (y))n−k

where f is the density of F . Some algebra yields

E
[
ÊS

(n)

α (~Y )

]
= − 1

[nα]

[nα]∑
k=1

E [Yk:n]

= − 1

[nα]

[nα]∑
k=1

∫
y fk(y) dy

= − n

[nα]

[nα]−1∑
h=0

(
n− 1

h

)∫
y F (y)h(1− F (y))n−h−1 f(y) dy

= − n

[nα]

∫
FB([nα]− 1;n− 1, F (y))y f(y)dy

where FB(k;n; p) is the cumulative distribution function of a standard bino-
mial distribution. The conclusion follows from the representation FB(k;n; p) =
I1−p(n− k; k + 1) and a standard change of integration f(y)dy = dp. �

Finally, we prove eq. (15) on joint elicitability of ES and V aR

Proposition A.6. The scoring function (14) jointly elicits V aR and ES in the
sense of equation (15) under the condition W · V aR > ES

Proof: Follows from direct computation. Denoting ? ≡ {v = V aR, e = ES}
one obtains

∂

∂v

∣∣∣∣
?

E[SW (v, e,X)] = E[(Wv − e)(α− (X + v < 0))]|? = 0

∂

∂e

∣∣∣∣
?

E[SW (v, e,X)] = E[α(e− v) + (v +X)(X + v < 0)]|? = 0
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and

∂2

∂v2

∣∣∣∣
?

E[SW (v, e,X)] = E[(W v − e)δ(X + v)]|? = (W V aR− ES)f(−V aR)

∂2

∂e2

∣∣∣∣
?

E[SW (v, e,X)] = α

∂2

∂v∂e

∣∣∣∣
?

E[SW (v, e,X)] = 0

which also shows that the stationary point is a saddle when the condition is
violated. �
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Figure 2: Scaled distributions
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Figure 5: Student-t distributions
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Figure 8: Normalized Student-t distributions
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Figure 11: Fixed V aR2.5% Student-t distributions
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